LETTER
Synthesis of the Tricyclic Core of the Marine Alkaloid Lepadiformine
273
(3) (a) Pearson, W. H.; Ren, Y. J. Org. Chem. 1999, 64, 688.
(b) Werner, K. M.; De los Santos, J. M.; Weinreb, S. M.;
Shang, M. J. Org. Chem. 1999, 64, 4865. (c) Abe, H.;
Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2000, 122,
4583. (d) Maeng, J. H.; Funk, R. L. Org. Lett. 2001, 3, 3511.
(4) Sun, P.; Sun, C.; Weinreb, S. M. J. Org. Chem. 2002, 67,
4337.
(5) (a) Golden, J. E.; Aubé, J. Chemtracts 1999, 12, 1026.
(b) Snider, B. B.; Lin, H. J. Am. Chem. Soc. 1999, 121,
7778. (c) Scheffler, G.; Seike, H.; Sorensen, E. J. Angew.
Chem. Int. Ed. 2000, 39, 4593. (d) Ousmer, M.; Braun, N.
A.; Ciufolini, M. A. Org. Lett. 2001, 3, 765. (e)Funk, R. L.;
Maeng, J. H. Org. Lett. 2001, 3, 1125. (f) Wardrop, D. J.;
Zhang, W. Org. Lett. 2001, 3, 2353.
(6) (a) Snider, B. B.; Lin, H. Org. Lett. 2000, 2, 643.
(b) Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053.
(c) Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T.
Tetrahedron Lett. 2002, 43, 2411. (d) Nagumo, S.; Nishida,
A.; Yamazaki, C.; Matoba, A.; Murashige, K.; Kawahara, N.
Tetrahedron 2002, 58, 4917.
(7) (a) Kuehne, M. E.; Horne, D. A. J. Org. Chem. 1975, 40,
1287. (b) Fujimoto, R. A.; Boxer, J.; Jackson, R. H.; Simke,
J. P.; Neale, R. F.; Snowhill, E. W.; Barbaz, B. J.; Williams,
M.; Sills, M. A. J. Med. Chem. 1989, 32, 1259. (c) Kawase,
M.; Kitamura, T.; Kikugawa, Y. J. Org. Chem. 1989, 54,
3394. (d) Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito,
Y. J. Org. Chem. 1996, 61, 9090. (e) Bagley, M. C.;
Oppolzer, W. Tetrahedron: Asymmetry 2000, 11, 2625.
(8) (a) Jones, R. C. F.; Patience, J. M. J. Chem. Soc., Perkin
Trans. 1 1990, 2350. (b) Gill, G. B.; James, G. D.; Oates, K.
V.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1993, 2567.
(9) Reuschling, D.; Pietsch, H.; Linkies, A. Tetrahedron Lett.
1978, 615.
isolated by column chromatography to give the acetal as an
oil that slowly crystallised as a colourless, waxy solid 4
(0.699 g, 2.20 mmol) in 88% yield based on recovered
starting material (0.125 g, 0.51 mmol). Data for 4: IR: νmax
(CH2Cl2) = 3019, 1669, 1640, 1346 cm–1. Found: M+ (+ H),
318.17144. C18H24NO4 requires M+: 318.17053. 1H NMR
(400 MHz, CDCl3): δ = 2.37 (1 H, ddt, J = 1.1, 7.7, 14.7 Hz,
CH2), 2.54 (1 H, dd, J = 6.6, 14.7 Hz, CH2), 3.27 (3 H, s,
OCH3), 3.32 (3 H, s, OCH3), 3.75 (3 H, s, OCH3), 4.21 (1 H,
s, OCHO), 4.61 (2 H, s, PhCH2), 4.84 (2 H, m, CH=CH2),
5.12 (1 H, s, H-3), 5.18 (1 H, m, CH=CH2), 7.15–7.38 (5 H,
m, aromatic). 13C NMR (100 MHz, CDCl3): δ = 33.8 (CH2),
43.6 (PhCH2), 57.8, 57.9 and 58.0 (3 × OCH3), 71.8 (C-5),
95.2 (C-3), 107.6 (OCHO), 118.6 (CH=CH2), 126.6, 128.0
and 128.5 (aromatic), 130.9 (CH=CH2), 139.6 (aromatic),
172.2 (C-4), 174.5 (C=O).
(13) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.
2001, 123, 749.
(14) Fischer, R.; Graff, A.; Bretschneider, T.; Erdelen, C.;
Drewes, M. W.; Feucht, D. WO Patent 2001023354, 2001.
(15) Laffan, D. P.; Baenziger, M.; Duc, L.; Evans, A. R.;
McGarrity, J. F.; Meul, T. Helv. Chim. Acta 1992, 75, 892.
(16) Prepared from the phosphonium bromide in ref.17b by
treatment with KOH.
(17) Prepared from the bromide: (a) Kozikowski, A. P.; Stein, P.
D. J. Org. Chem. 1984, 49, 2301. (b) Ziegler, F. E.; Klein,
S. I.; Pati, U. K.; Wang, T.-F. J. Am. Chem. Soc. 1985, 107,
2730.
(18) Hoffman, R. V.; Bishop, R. D.; Fitch, P. M.; Hardenstein, R.
J. Org. Chem. 1980, 45, 917.
(19) Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K.
Tetrahedron: Asymmetry 1993, 4, 1455.
(20) (a) Aubé, J.; Milligan, G. L. J. Am. Chem. Soc. 1991, 113,
8965. (b) Data for the trans diastereomer 11a, (7aS*,11aS*)-
Decahydro-3H-pyrrolo[2,1-j]quinolin-3-one: IR: νmax
(CH2Cl2) = 2935, 2864,1674, 1418 cm–1. Found: M+,
193.14725. C12H19NO requires M+: 193.14666. 1H NMR
(400 MHz, CDCl3): δ = 1.11–1.39 (4 H, m, CH2), 1.41–1.87
(10 H, m, CH2), 1.93 (1 H, dd, J = 7.7, 12.3 Hz, CH2), 2.20
(1 H, dd, J = 8.8, 16.5 Hz, H-2), 2.49 (1 H, dddd, J = 0.9, 7.9,
12.6, 16.5 Hz, H-2), 2.77 (1 H, dddd, J = 1.1, 7.0, 11.2, 13.7
Hz, H-5), 3.88 (1 H, dd, J = 8.4, 13.7 Hz, H-5). 13C NMR (75
MHz, CDCl3): δ = 21.4 (CH2), 22.5 (CH2), 23.5 (CH2), 24.9
(CH2), 26.0 (CH2), 27.4 (CH2), 30.6 (CH2), 33.3 (C-5), 33.8
(C-2), 42.1 (C-7a), 64.1 (C-11a), 175.9 (C=O).
(21) Several papers have appeared on asymmetric synthesis of
5,5-disubstituted pyrrolidin-2-ones: (a) Uno, H.; Baldwin, J.
E.; Russell, A. T. J. Am. Chem. Soc. 1994, 116, 2139.
(b) Nagasaka, T.; Imai, T. Heterocycles 1995, 41, 1927.
(c) Nagasaka, T.; Imai, T. Chem. Pharm. Bull. 1997, 45, 36.
(d) Langlois, N.; Choudhury, P. K. Tetrahedron Lett. 1999,
40, 2525. (e) Schuch, C. M.; Pilli, R. A. Tetrahedron:
Asymmetry 2000, 11, 753. (f) Choudhury, P. K.; Le Nguyen,
B.; Langlois, N. Tetrahedron Lett. 2002, 43, 463.
(10) (a) Casiraghi, G.; Rassu, G. Synthesis 1995, 607. (b) Rassu,
G.; Carta, P.; Pinna, L.; Battistini, L.; Zanardi, F.; Acquotti,
D.; Casiraghi, G. Eur. J. Org. Chem. 1999, 6, 1395.
(c) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem.
Soc. Rev. 2000, 29, 109.
(11) Jones, R. C. F.; Bates, A. D. Tetrahedron Lett. 1986, 27,
5285.
(12) The following experimental procedure for conversion of
3b to 4 applies: The substrate 3b (0.73g, 3mmol) was
dissolved in anhyd THF (30 mL) under N2 and cooled to –78
°C. A solution of n-BuLi in hexane (2.25 mL of a 1.6 M
solution, 3.6 mmol, 1.2 equiv) was added dropwise. After
stirring for 30 min at –78 °C TMSCl (0.57 mL, 4.5 mmol, 1.5
equiv) was added dropwise and the solution was stirred for a
further 30 min at –78 °C. Trimethyl orthoformate (1.00 mL,
9.0 mmol, 3 equiv) was then added, followed by BF3⋅OEt2
(0.57 mL, 4.5 mmol, 1.5 equiv). The reaction was allowed to
slowly warm to –20 °C over 2 h. Sat. NaHCO3 solution was
then added and the THF was removed by evaporation. The
remaining aqueous layer was extracted with 3 portions of
EtOAc. The organic layers were combined, dried and
concentrated to give an oily residue. The product was
Synlett 2003, No. 2, 271–273 ISSN 0936-5214 © Thieme Stuttgart · New York