Journal of the American Chemical Society
Page 6 of 8
(14) Amine 4a is used in the preparation of the medication Cinacalcet,
and both enantiomers are commercially available for a cost of $1
USD/gram or less.
decreasing reaction efficiency. Dichloromethane and trifluorotoluene
have only slightly inferior performance, while acetonitrile gives 72:28
e.r. under the same conditions as the best result with THF.
1
2
3
4
5
(15) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of Nitrogen
Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med.
Chem. 2014, 57, 10257–10274.
(23) Enders, D.; Rembiak, A.; Seppelt, M. Asymmetric organocatalytic
reduction of ketimines with catecholborane employing a N-triflyl
phorphoramide Brønsted acid as catalyst. Tetrahedron Letters. 2013,
54, 470–473.
6
7
8
9
(16) Park, Y.; Schindler, C. S.; Jacobsen, E. N. Enantioselective Aza-
Sakurai Cyclizations: Dual Role of Thiourea as H-Bond Donor and
Lewis Base. J. Am. Chem. Soc. 2016, 138, 14848–14851.
(24) Chong, C. C.; Kinjo. R. Hydrophosphination of CO2 and
Subsequent Formate Transfer in the 1,3,2-Diazaphospholene-
Catalyzed N-Formylation of Amines. Angew. Chem., Int. Ed. 2015, 54,
12116–12120.
(17) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. Organometallic
Ring-Opening Reactions of N-Acyl and N-Alkoxycarbonyl Lactams.
Synthesis of Cyclic Imines. J. Org. Chem. 1989, 54, 228–234.
(25) Wang, Z.; Ye, X.; Wi, S.; Wu, P.; Zhang, A.; Sun, J. A Highly
Enantioselective Lewis Basic Organocatalyst for Reduction of N-Aryl
Imines with Unprececended Substrate Spectrum. Org. Lett. 2006, 8,
999–1001.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) (a) Jennings, W. B.; Boyd, D. R. The Mechanism of
Interconversion of (Z)- and (E)-Ketimines. J. Am. Chem. Soc. 1972, 94,
7187–7188. (b) Johnson, J. E.; Morales, N. M.; Gorczyca, A. M.;
Dolliver, D. D.; McAllister, M. A. Mechanisms of Acid-Catalyzed Z/E
Isomerization of Imines. J. Org. Chem. 2001, 66, 7979–7985. (c)
Renzi, P.; Hioe, J.; Gschwind, R. M. Decrypting Transition States by
Light: Photoisomerization as a Mechanistic Tool in Brønsted Acid
Catalysis. J. Am. Chem. Soc. 2017, 139, 6752–6760.
(26) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. Taking the F out
of FLP: Simple Lewis Acid-Base Pairs for Mild Reductions with
Neutral Boranes via Borenium Ion Catalysis. J. Am. Chem. Soc. 2012,
134, 17384–17387.
(27) Blackwell, J. M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. B(C6F5)3-
Catalyzed Hydrosilation of Imines via Silyliminium Intermediates.
Org. Lett. 2000, 2, 3921–3923.
(19) (a) Sparteine/palladium mediated: Campos, K. R.; Klapars, A.;
Waldman, J. H.; Dormer, P. G.; Chen, C. Enantioselective, Palladium-
Catalyzed a-Arylation of N-Boc-pyrrolidine. J. Am. Chem. Soc. 2006,
128, 3538–3539. (b) Intramolecular reductive amination: Zhang, Y.;
Yan, Q.; Zi, G.; Hou, G. Enantioselective Direct Synthesis of Free
Cyclic Amines via Intramolecular Reductive Amination. Org. Lett.
2017, 19, 4215-4218. (c) Auxiliary based: Sallio, R.; Lebrun, S.;
Gigant, N.; Gillaizeau, I.; Deniau, E. Asymmetric Synthesis of 2-
Heteroaryl Cyclic Amines: Total Synthesis of (–)-Anabasine. Eur. J.
Org. Chem. 2014, 4381–4388. (d) Reddy, L. R.; Prashad, M.
Asymmetric synthesis of 2-substituted pyrrolidines by addition of
Grignard reagents to y-chlorinated N-tert-butanesulfinyl imine. Chem.
Commun. 2010, 46, 222–224. (e) C-H Activation: Qin, J.; Zhou, Z.;
Cui, T.; Hemming, M.; Meggers, E. Enantioselective intramolecular
C–H amination of aliphatic azides by dual ruthenium and phosphine
catalysis. Chem. Sci. 2019, 10, 3202–3207. (f) Hydroamination: Dai,
X.-J.; Engl, O. D.; León, T., Buchwald, S. L. Catalytic Asymmetric
Synthesis of a-Arylpyrrolidines and Benzo-fused Nitrogen
Heterocycles. Angew. Chem., Int. Ed. 2019, 58, 3407–3411.
(28) Süsse, L.; LaFortune, J. H. W.; Stephan, D. W.; Oestreich, M.
Axially Chiral, Electrophilic Fluorophosphonium Cations: Synthesis,
Lewis Acidity, and Reactivity in the Hydrosilylation of Ketones.
Organometallics. 2019, 38, 712–721.
(29) (a) Hermeke, J.; Mewald, M.; Oestreich, M. Experimental
Analysis of the Catalytic Cycle of the Borane-Promoted Imine
Reduction with Hydrosilanes: Spectroscopic Detection of Unexpected
Intermediates and a Refined Mechanism. J. Am. Chem. Soc. 2013, 135,
17537–17546. (b) Süsse, L.; Hermeke, J.; Oestreich, M. The
Asymmetric Piers Hydrosilylation. J. Am. Chem. Soc. 2016, 138,
6940–694
(30) (a) Chen, D.; Leich, V.; Pan, F.; Klankermayer, J. Enantioselective
Hydrosilylation with Chiral Frustrated Lewis Pairs. Chem. Eur. J.
2012, 18, 5184–5187. (b) Ghattas, G.; Chen, D.; Pan, F.;
Klankermayer, J. Asymmetric hydrogenation of imines with a
recyclable chiral frustrated Lewis pair catalyst. Dalton Trans. 2012, 41,
9026–9028. (c) Lindqvist, M.; Borre, K.; Axenov, K.; Kótai, B.;
Nieger, M.; Leskelä, M.; Pápai, I.; Repo, T. Chiral Molecular
Tweezers: Synthesis and Reactivity in Asymmetric Hydrogenation. J.
Am. Chem. Soc. 2015, 137, 4038–4041.
(20) (a) Titanium or Zirconium: Willoughby, C. A.; Buchwald, S. L.
Synthesis of Highly Enantiomerically Enriched Cyclic Amines by the
Catalytic Asymmetric Hydrogenation of Cyclic Imines. J. Org. Chem.
1993, 58, 7627–7629. (b) Ringwald, M.; Stürmer, R.; Brintzinger, H.
H. Asymmetric Thermal Transformation, a New Way to Enantiopure
Biphenyl-Bridged Titanocene and Zirconocene Complexes: Efficient
Catalysts for Asymmetric Imine Hydrogenation. J. Am. Chem. Soc.
1999, 121, 1524–1527. (c) Ruthenium: Chen, F.; Ding, Z.; Qin, J.;
Wang, T.; He, Y.; Fan, Q.-H. Highly Effective Asymmetric
Hydrogenation of Cyclic N-Alkyl Imines with Chiral Cationic Ru-
MsDPEN Catlaysts. Org. Lett. 2011, 13, 4348–4351. (d) Iridium: Hou,
G.-H., Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. Iridium-Catalyzed
Asymmetric Hydrogenation of Cyclic Enamides. J. Am. Chem. Soc.
2009, 131, 1366–1367. (e) Zhang, Y.; Kong, D.; Wang, R.; Hou, G.
Synthesis of chiral cyclic amines via Ir-catalyzed enantioselective
hydrogenation of cyclic imines. Org. Biomol. Chem. 2017, 15, 3006–
3012. (f) Imine Reductase: Hussain, S.; Leipold, F.; Man, H.; Wells,
E.; France, S. P.; Mulholland, K. R.; Grogan, G.; Turner, N. J. An (R)-
Imine Reductase Biocatalyst for the Asymmetric Reduction of Cyclic
Imines. Chem. Cat. Chem. 2015, 7, 579–583.
(31) (a) Liu, Y.; Du, H. Chiral Dienes as “Ligands” for Borane-
Catalyzed Metal-Free Asymmetric Hydrogenation of Imines. J. Am.
Chem. Soc. 2013, 135, 6810–6813. (b) Meng, W.; Feng, X.; Du, H.
Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free
Hydrogenations and Hydrosilylations. Acc. Chem. Res. 2018, 51, 191–
201. (c) Tu, X.-S.; Zeng, N.-N.; Li, R.-Y., Xie, D.-Z.; Peng, Q.; Wang,
X.-C. C2-Symmetric Bicyclic Bisborane Catalysts: Kinetic or
Thermodynamic Products of a Reversible Hydroboration of Dienes.
Angew. Chem. Int. Ed. 2018, 57, 15096–15100. (d) Feng, X.; Du, H.
Metal-free asymmetric hydrogenation and hydrosilylation catalyzed by
frustrated Lewis pairs. Tetrahedron. Lett. 2014, 55, 6959–6964.
(32) Zhou, Q.; Meng, W.l Yang, J.; Du, H. A Continuously
Regenerable Chiral Ammonia Borane for Asymmetric Transfer
Hydrogenations. Angew. Chem., Int. Ed. 2018, 57, 12111–12115.
(33) Zumbrägel, N.; Merten, C.; Huber, S. M.; Gröger, H.
Enantioselective reduction of sulfur-containing cyclic imines through
biocatalysis. Nat. Commun. 2018, 9, 1949.
(2 ) (a) Firth, J. D.; Canipa, S. J.; Ferris, L.; O’Brien, P. Gram-Scale
Synthesis of the (–)-Sparteine Surrogate and (–)-Sparteine. Angew.
Chem., Int. Ed. 2018, 57, 223–226. (b) Ritter, S. K. Where has all the
sparteine gone? Chem. Eng. News 2017, 95 (17), 18–20.
29th 2019).
(34) (a) Arrigo, A. B.; Juengst, D.; Shah, K. “Crystalline form of (S)-
N-(5-(R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo-[1,5-A]-
pyrimidin-3-yl)-3-hydroxypyrrolidine-1-carboxamide
hydrogen
sulfate” US 2017/0165267 2017 (b) The ee of the product was further
upgraded to >96% by crystallization as a salt of D-malic acid. A yield
of greater than 75% was reported for this step on page 26 of the above
patent.
(22) Diethyl ether and toluene have comparable performance; however
imines are less soluble in these solvents at reduced temperature,
ACS Paragon Plus Environment