10.1002/anie.201810415
Angewandte Chemie International Edition
COMMUNICATION
Cao, R. Custelcean, J. Hostaš, P. Hobza, R. Glaser, Y. Y. Wang, et al.
Nat. Commun. 2017, 8, 938; d) B. Wu, S. Li, Y. Lei, H. Hu, N. D. S.
Amadeu, C. Janiak, J. S. Mathieson, D. L. Long, L. Cronin, X. J. Yang,
Chem. - Eur. J. 2015, 21, 2588; e) S. Li, C. Jia, B. Wu, Q. Luo, X. Huang,
Z. Yang, Q. S. Li, X. J. Yang, Angew. Chemie Int. Ed. 2011, 50, 5721.
H. Maeda, K. Kitaguchi, Y. Haketa, Chem. Commun. 2011, 47, 9342.
Y. Hua, Y. Liu, C. H. Chen, A. H. Flood, J. Am. Chem. Soc. 2013, 135,
14401.
Acknowledgements
This work was funded by the National Science Foundation (NSF)
CAREER CHE-1555324, the Center for Biomolecular Structure
and Dynamics CoBRE (NIH NIGMS grant P20GM103546),
Montana University System MREDI 51030-MUSRI2015-02, and
the University of Montana (UM). The X-ray crystallographic data
were collected using a Bruker D8 Venture principally supported
by NSF MRI CHE-1337908. We thank Earle Adams for his tireless
assistance with 1H NMR spectroscopy and Ed Rosenberg for
valuable EXSY NMR advice. We wholeheartedly thank Bruce
Bowler, Moses Leavens, and Haotian Lei for their help with
stopped-flow experiments.
[8]
[9]
[10] a) J. Y. C. Lim, P. D. Beer, Chem 2018, 4, 731; b) R. Tepper, U. S.
Schubert, Angew. Chemie Int. Ed. 2018, 57, 6004; c) B. Tylkowski, P. J.
Costa, Phys. Sci. Rev. 2017, 2, 1; d) D. Bulfield, S. M. Huber, Chem. -
Eur. J. 2016, 22, 14434; e) L. C. Gilday, S. W. Robinson, T. A. Barendt,
M. J. Langton, B. R. Mullaney, P. D. Beer, Chem. Rev. 2015, 115, 7118;
f) T. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc.
Rev. 2013, 42, 1667; g) M. R. Scholfield, C. M. V. Zanden, M. Carter, P.
S. Ho, Protein Sci. 2013, 22, 139; h) M. Erdélyi, Chem. Soc. Rev. 2012,
41, 3547; i) G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansotera,
G. Terraneo, Chem. Soc. Rev. 2010, 39, 3772; j) A. C. Legon, Phys.
Chem. Chem. Phys. 2010, 12, 7736; k) P. Politzer, J. S. Murray, T. Clark,
Phys. Chem. Chem. Phys. 2010, 12, 7748; l) J. W. Lauher, F. W. Fowler,
N. S. Goroff, Acc. Chem. Res. 2008, 41, 1215; m) P. Politzer, P. Lane,
M. C. Concha, Y. Ma, J. S. Murray, J. Mol. Model. 2007, 13, 305; n) P.
Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 2005, 38,
386; o) P. Metrangolo, G. Resnati, Chem. - Eur. J. 2001, 7, 2511.
[11] a) C. F. Ng, H. F. Chow, T. C. W. Mak, Angew. Chemie Int. Ed. 2018, 57,
4986; b) A. Borissov, J. Y. C. Lim, A. Brown, K. E. Christensen, A. L.
Thompson, M. D. Smith, P. D. Beer, Chem. Commun. 2017, 53, 2483; c)
J. Cao, X. Yan, W. He, X. Li, Z. Li, Y. Mo, M. Liu, Y. B. Jiang, J. Am.
Chem. Soc. 2017, 139, 6605; d) D. E. Barry, C. S. Hawes, S. Blasco, T.
Gunnlaugsson, Cryst. Growth Des. 2016, 16, 5194; e) J. Lieffrig, A. G.
Niassy, O. Jeannin, M. Fourmigué, CrystEngComm 2015, 17, 50; f) F.
Zapata, A. Caballero, P. Molina, I. Alkorta, J. Elguero, J. Org. Chem.
2014, 79, 6959; g) L.-Y. You, S.-G. Chen, X. Zhao, Y. Liu, W.-X. Lan, Y.
Zhang, H.-J. Lu, C.-Y. Cao, Z.-T. Li, Angew. Chem. Int. Ed. 2012, 51,
1657; h) A. Casnati, R. Liantonio, P. Metrangolo, G. Resnati, R. Ungaro,
F. Ugozzoli, Angew. Chemie Int. Ed. 2006, 45, 1915; i) A. Farina, S. V.
Meille, M. T. Messina, P. Metrangolo, G. Resnati, G. Vecchio, Angew.
Chemie Int. Ed. 1999, 38, 2433.
Conflict of interest
The authors declare no conflict of interest.
Keywords: halogen bonding • helical structures • host-guest
systems • supramolecular chemistry • kinetics
[1]
[2]
J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4763.
P. S. Cremer, A. H. Flood, B. C. Gibb, D. L. Mobley, Nat. Chem. 2017,
10, 8.
[3]
a) E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda,
Chem. Rev. 2016, 116, 13752; b) T. A. Martinek, F. Fülöp, Chem. Soc.
Rev. 2012, 41, 687; c) D. W. Zhang, X. Zhao, J. L. Hou, Z. T. Li, Chem.
Rev. 2012, 112, 5271; d) G. Guichard, I. Huc, Chem. Commun. 2011, 47,
5933; e) A. Roy, P. Prabhakaran, P. K. Baruah, G. J. Sanjayan, Chem.
Commun. 2011, 47, 11593; f) H. Juwarker, J. M. Suk, K. S. Jeong, Chem.
Soc. Rev. 2009, 38, 3316; g) I. Saraogi, A. D. Hamilton, Chem. Soc. Rev.
2009, 38, 1726; h) W. S. Horne, S. H. Gellman, Acc. Chem. Res. 2008,
41, 1399; i) C. M. Goodman, S. Choi, S. Shandler, W. F. DeGrado, Nat.
Chem. Biol. 2007, 3, 252; j) R. P. Cheng, Curr. Opin. Struct. Biol. 2004,
14, 512; k) I. Huc, European J. Org. Chem. 2004, 17; l) M. S. Cubberley,
B. L. Iverson, Curr. Opin. Chem. Biol. 2001, 5, 650; m) D. J. Hill, M. J.
Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev. 2001, 101,
3893.
[12] a) O. Dumele, B. Schreib, U. Warzok, N. Trapp, C. A. Schalley, F.
Diederich, Angew. Chemie Int. Ed. 2016, 56, 1152; b) L. Turunen, U.
Warzok, R. Puttreddy, N. K. Beyeh, C. A. Schalley, K. Rissanen, Angew.
Chemie Int. Ed. 2016, 55, 14033; c) N. K. Beyeh, F. Pan, K. Rissanen,
Angew. Chemie Int. Ed. 2015, 54, 7303; d) O. Dumele, N. Trapp, F.
Diederich, Angew. Chemie Int. Ed. 2015, 54, 12339; e) C. B. Aakeroy, A.
Rajbanshi, P. Metrangolo, G. Resnati, M. F. Parisi, J. Desper, T. Pilati,
CrystEngComm 2012, 14, 6366.
[4]
a) H. Miyake, H. Tsukube, Chem. Soc. Rev. 2012, 41, 6977; b) R. S.
Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434; c)
M. Albrecht, R. Fröhlich, Bull. Chem. Soc. Jpn. 2007, 80, 797; d) Y.
Furusho, E. Yashima, Chem. Rec. 2007, 7, 1; e) C. He, Y. Zhao, D. Guo,
Z. Lin, C. Duan, Eur. J. Inorg. Chem. 2007, 3451; f) J.-M. Lehn, Chem.
Soc. Rev. 2007, 36, 151; g) C. Piguet, M. Borkovec, J. Hamacek, K.
Zeckert, Coord. Chem. Rev. 2005, 249, 705; h) M. J. Hannon, L. J. Childs,
Supramol. Chem. 2004, 16, 7; i) M. Albrecht, Chem. Rev. 2001, 101,
3457; j) G. F. Swiegers, T. J. Malefetse, Chem. Rev. 2000, 100, 3483; k)
D. L. Caulder, K. N. Raymond, J. Chem. Soc. - Dalt. Trans. 1999, 1185;
l) C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97, 2005.
a) Q. He, P. Tu, J. L. Sessler, Chem 2018, 4, 46; b) D. Yang, J. Zhao, X.
J. Yang, B. Wu, Org. Chem. Front. 2018, 5, 662; c) J. Zhao, D. Yang, X.
[13] a) J. Y. C. Lim, I. Marques, V. Félix, P. D. Beer, Angew. Chemie Int. Ed.
2018, 57, 584; b) J. Y. C. Lim, I. Marques, V. Félix, P. D. Beer, J. Am.
Chem. Soc. 2017, 139, 12228; c) T. A. Barendt, S. W. Robinson, P. D.
Beer, Chem. Sci. 2016, 7, 5171.
[14] C. J. Massena, N. B. Wageling, D. A. Decato, E. Martin Rodriguez, A. M.
Rose, O. B. Berryman, Angew. Chemie Int. Ed. 2016, 55, 12398.
[15] Crystallographic Data for 4 (UMT_OB12_sq) C80H61Br2.83I3N3O2, M =
1703.46, monoclinic, space group C2/c (no. 15), a = 54.427(4) Å, b =
36.427(3) Å, c = 35.844(3) Å, = 128.989(2) °, V = 55236(7) Å3, Z = 24,
T = 100 K, (Cu) = 9.728 mm-1, 2max = 73.238 °, 96618 reflections
collected, 13220 unique (Rint = 0.0939, Rsigma = 0.0831), R1 = 0.0745 (I >
2(I)), wR2 = 0.2298 (all data). See Section S4 in the SI for all
crystallographic details. CCDC 1852577 contains the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
[5]
J.
Yang,
B.
Wu,
Coord.
Chem.
Rev.
2018,
DOI:
10.1016/j.ccr.2018.01.002; d) H. Juwarker, K. S. Jeong, Chem. Soc. Rev.
2010, 39, 3664; e) H. Juwarker, J. M. Suk, K. S. Jeong, Chem. Soc. Rev.
2009, 38, 3316.
[6]
[7]
J. Sánchez-Quesada, C. Seel, P. Prados, J. De Mendoza, I. Dalcol, E.
Giralt, J. Am. Chem. Soc. 1996, 118, 277.
a) X. Bai, C. Jia, Y. Zhao, D. Yang, S.-C. Wang, A. Li, Y.-T. Chan, Y.-Y.
Wang, X.-J. Yang, B. Wu, Angew. Chemie Int. Ed. 2018, 130, 1869; b)
W. Zuo, Z. Huang, Y. Zhao, W. Xu, Z. Liu, X.-J. Yang, C. Jia, B. Wu,
Chem. Commun. 2018, 54, 7378; c) C. Jia, W. Zuo, D. Yang, Y. Chen, L.
[16] Slow SNAr halide exchange (bromide for iodide) limited experiment times
to several hours (see Section S4.4 in the SI).
[17] The P value from a two-tailed paired t-test was 0.024 (Table S6).
This article is protected by copyright. All rights reserved.