ribonucleosides show significant cytostatic4 and anti-HCV5
effects. Also, 6-alkynylpurines are potent cytostatics6 and inhibit
15-lipoxygenase.7 In addition, unnatural 6-arylpurine nucleo-
bases were used in artificial base pairs8 and as covalent base-
pair analogues.9 Until recently, biological activity screening and
other applications (e.g., in chemical biology) have been limited
to easily accessible purines bearing simple aryl groups, while
highly substituted and/or functionalized ones still remain to be
explored. Since many bulky and hydrophobic aryl C-nucleosides
also have been used recently as potential nucleobase surrogates10
in extension of the genetic alphabet, the preparation of 6-arylpu-
rines bearing bulky hydrophobic substituents is of particular
interest. As for the synthetic methods, 6-arylpurines mostly have
been prepared by cross-coupling reactions11 of 6-halopurines
with various organometallics (arylboronic acids, stannanes, or
zinc halides); however, for highly functionalized aryl groups,
such organometallics would not be easily available or even stable
enough under the reaction conditions. Therefore, alternative
procedures of their synthesis are still of interest.
Preparation of Highly Substituted 6-Arylpurine
Ribonucleosides by Ni-Catalyzed
Cyclotrimerization. Scope of the Reaction
Pavel Turek,†,‡ Petr Nova´k,† Radek Pohl,‡
Michal Hocek,*,‡ and Martin Kotora*,†,‡
Department of Organic and Nuclear Chemistry, and the Centre
for New AntiVirals and Antineoplastics, Faculty of Science,
Charles UniVersity, HlaVoVa 8, 128 43 Praha 2, Czech
Republic, and Centre for New AntiVirals and Antineoplastics,
Institute of Organic Chemistry and Biochemistry, Academy of
Sciences of the Czech Republic, FlemingoVo na´m. 2,
166 10 Praha 6, Czech Republic
kotora@natur.cuni.cz; hocek@uochb.cas.cz
ReceiVed July 18, 2006
In our previous reports, we have shown that cyclotrimerization
of 6-alkynylpurines with zirconacyclopentadienes12 or with R,ω-
diynes catalyzed by in situ generated Ni(0)-species from NiBr2-
(dppe)/Zn is a suitable method for the preparation of 9-Bn- or
9-THP protected 6-arylpurines.13 Herein, we wish to describe
an extension of the latter methodology to the synthesis of the
corresponding ribonucleosides. It is not a routine extension
because for nucleoside synthesis, the method must be compatible
with acyl protected sugar moieties and with rather labile
nucleosidic bonds, and also, the functionality must survive
(3) (a) Bakkestuen, A. K.; Gundersen, L.-L.; Langli, G.; Liu, F.; Nolsøe,
J. M. J. Bioorg. Med. Chem. Lett. 2000, 10, 1207-1210. (b) Andresen, G.;
Gundersen, L.-L.; Nissen-Meyer, J.; Rise, F.; Spilsberg, B. Bioorg. Med.
Chem. Lett. 2002, 12, 567-569. (c) Gundersen, L.-L.; Nissen-Meyer, J.;
Spilsberg, B. J. Med. Chem. 2002, 45, 1383-1386. (d) Bakkestuen, A. K.;
Gundersen, L.-L.; Utenova, B. T. J. Med. Chem. 2005, 48, 2710-2723.
(4) (a) Hocek, M.; Holy´, A.; Votruba, I.; Dvorˇa´kova´, H. J. Med. Chem.
2000, 43, 1817-1825. (b) Hocek, M.; Holy´, A.; Votruba, I.; Dvorˇa´kova´,
H. Collect. Czech. Chem. Commun. 2001, 66, 483-499.
Transition metal complex catalyzed cocyclotrimerization of
protected alkynylpurine ribonucleosides 1 with various diynes
2 gave rise to a series of 6-arylpurine nucleosides 3 that were
further deprotected to free nucleosides 4. Generally, the best
yields of cyclotrimerizations were obtained with a catalytic
system Ni(cod)2/2PPh3. On the other hand, CoBr(PPh3)3
proved to be a superior catalyst for cyclotrimerization of 1
with dipropargyl ether 2g. In addition, Ni catalysis is also
suitable for direct cyclotrimerization of unprotected alky-
nylpurine ribonucleosides 5 to the corresponding 6-arylpu-
rinylribosides 4.
(5) Hocek, M.; Nausˇ, P.; Pohl, R.; Votruba, I.; Furman, P. A.; Tharnish,
P. M.; Otto, M. J. J. Med. Chem. 2005, 48, 5869-5873.
(6) (a) Hocek, M.; Votruba, I. Bioorg. Med. Chem. Lett. 2002, 12, 1055-
1058. (b) Hocek, M.; Dvorˇa´kova´, H.; C´ısaˇrova´, I. Collect. Czech. Chem.
Commun. 2002, 67, 1560-1578. (c) Hocek, M.; Votruba, I.; Dvorˇa´kova´,
H.; Tetrahedron 2003, 59, 607-611. (d) Hocek, M.; Sˇteˇpnicˇka, P.; Ludv´ık,
J.; C´ısaˇrova´, I.; Votruba, I.; Rˇ eha, D.; Hobza, P. Chem.sEur. J. 2004, 10,
2058-2066. (e) Nausˇ, P.; Votruba, I.; Hocek, M. Collect. Czech. Chem. Com-
mun. 2004, 69, 1955-1970. (f) Brathe, A.; Gundersen, L.-L.; Nissen-Meyer,
J.; Rise, F.; Spilsberg, B. Bioorg. Med. Chem. Lett. 2003, 13, 877-880.
(7) Berg, T. C.; Gundersen, L.-L.; Eriksen, A. B.; Malterud, K. E. Eur.
J. Org. Chem. 2005, 4988-4994.
(8) Hirao, I.; Ohtsuki, T.; Fujiwara, T.; Mitsui, T.; Yokogawa, T.; Okuni,
T.; Nakayama, H.; Takio, K.; Yabuki, T.; Kigawa, T.; Kodama, K.;
Yokogawa, T.; Nishikawa, K.; Yokoyama, S. Nat. Biotechnol. 2002, 20,
177-182.
(9) Havelkova´, M.; Dvoˇra´k, D.; Hocek, M. Tetrahedron 2002, 58, 7431-
7435.
Purine bases and nucleosides bearing an aryl moiety in
position 6 display diverse types of biological activity: some
substituted 6-arylpurine bases are antagonists of corticotropin
releasing hormones1 or adenosine receptors2 or possess anti-
mycobacterial and antibacterial activity,3 while 6-arylpurine
(10) (a) Pathak, A. K.; Pathak, V.; Seitz, L. E.; Suling, W. J.; Reynolds,
R. C. J. Med. Chem. 2004, 47, 273-276. (b) Kool, E. T. Acc. Chem. Res.
2002, 35, 936-943. (c) Kool, E. T.; Morales, J. C.; Guckian, K. M. Angew.
Chem., Int. Ed. 2000, 39, 990-1009.
(11) Review: Hocek, M. Eur. J. Org. Chem. 2003, 245-254.
(12) For Ni-mediated reaction of 6-alkynylpurines with zirconacyclo-
pentadienes, see: Turek, P.; Kotora, M.; Hocek, M.; Votruba, I. Collect.
Czech. Chem. Commun. 2005, 70, 339-349.
(13) (a) Turek, P.; Kotora, M.; Hocek, M.; C´ısaˇrova´, I. 2003, 44, 785-
788. (b) Turek, P.; Kotora, M.; Tisˇlerova´, I.; Hocek, M.; Votruba, I.;
C´ısaˇrova´, I. J. Org. Chem. 2004, 69, 9224-9233.
* To whom correspondence should be addressed. (M.H.) Phone: +420
220182324; fax: +420 220183559. (M.K.) Phone: +420 221 951 334; fax:
+420 221 951 326.
† Charles University.
‡ Institute of Organic Chemistry and Biochemistry.
(1) Cocuzza, A. J.; Chidester, D. R.; Culp, S.; Fitzgerald, L.; Gilligan,
P. Bioorg. Med. Chem. Lett. 1999, 9, 1063-1066.
(2) Chang, L. C. W.; Spanjersberg, R. F.; von Frijtag Drabbe Ku¨nzel, J.
K.; Mulder-Krieger, T.; Brussee, J.; Izerman, A. P. J. Med. Chem. 2006,
49, 2861-2867.
10.1021/jo061485y CCC: $33.50 © 2006 American Chemical Society
Published on Web 10/11/2006
8978
J. Org. Chem. 2006, 71, 8978-8981