10.1002/adsc.201901260
Advanced Synthesis & Catalysis
of 2-chloroacetophenone: To an oven-dried undivided
glass vial (10 mL), string bar, CoCl2·6H2O (4.7 mg,
0.02 mmol. 10 mol%), MgCl2·6H2O (121.9 mg, 0.6
mmol, 3.0 equiv.), LiClO4 (63.8 mg, 0.6 mmol, 3.0
equiv.) was added. The bottle was equipped with a
rubber septum and graphite rod (ϕ 2 mm, about 10
mm immersion depth in solution) as the anode and
cathode. The cell was sealed and flushed with oxygen
for 15 minutes, followed by the sequential addition of
olefin substrates (23 μL, 0.20 mmol, 1.0 equiv.),
acetone (5.9 mL) and DCM (0.1 mL) via syringe.
Then the bulk electrolysis was started at a constant
current of 5 mA at 40 ˚C for 5 h. When the reaction
completed as indicted by TLC, the pure product
(white solid 27 mg, 88% Yield.) was obtained by
flash column chromatography on silica gel
(Petroleum ether:ethyl acetate = 20:1). Regarding
reticulated vitreous carbon (RVC, 100 PPI, 10 mm
10 mm 2 mm) as the electrode, the sheet of RVC
was connected by the graphite rod with a sharpened
head and the reaction was run for 12 h unless
otherwise stated.
Liedtke, T. Hilche, S. Klare, A. Gansäuer,
ChemSusChem, 2018, DOI: 10.1002/cssc.201900344.
[4] a) A. Gansäuer, S. Hildebrandt, A. Michelmann, T.
Dahmen, D. von Laufenberg, C. Kube, G. D. Fianu, R.
A. Flowers II, Angew. Chem. Int. Ed. 2015, 54, 7003-
7006; Angew. Chem. 2015, 127, 7109-7112; b) A.
Gansäuer, D. von Laufenberg, C. Kube, T. Dahmen, A.
Michelmann, M. Behlendorf, R. Sure, M. Seddiqzai, S.
Grimme, D. V. Sadasivam, G. D. Fianu, R. A. Flowers
II, Chem. Eur. J. 2015, 21, 280-289; c) A. Gansäuer, C.
Kube, K. Daasbjerg, R. Sure, S. Grimme, G. D. Fianu,
D. V. Sadasivam, R. A. Flowers II, J. Am. Chem. Soc.
2014, 136, 1663-1671; d) A. Gansäuer, M. Behlendorf,
D. von Laufenberg, A. Fleckhaus, C. Kube, D. V.
Sadasivam, R. A. Flowers II, Angew. Chem. Int. Ed.
2012, 51, 4739-4742, Angew. Chem. 2012, 124, 4819-
4823.
[5] a) R. C. Larock, Comprehensive Organic
Transformations, Wiley-VCH, New York, 2nd edn,
1999; b) M. J. Dagani, H. J. Barda, T. J. Benya, D. C.
Sanders, Ullmann’s Encyclopedia of Industrial
Chemistry: Bromine Compounds, Wiley-VCH,
Weinheim, 2002; c) S. Ma, L. Lu, P. Lu, J. Org. Chem.
2005, 70, 1063; d) K.Takami, S.-I. Usugi, H. Yorimitsu,
K. Oshima, Synthesis 2005, 824; e) A. W. Erian, S. M.
Sherif, H. M. Gaber, Molecules, 2003, 8, 793; f) J. E.
Baldwin, A. M. Fryer, G. J. Pritchard, J. Org. Chem.
2001, 66, 2588.
Acknowledgements
We greatly appreciate financial support from Qilu University of
Technology (Shandong Academy of Sciences; no. 0412048811,
81110326), Shandong Provincial Natural Science Foundation
(no. ZR2018BB017), the National Natural Science Foundation of
China (nos. 21801144, 81872744, 51602164), and Program for
Scientific Research Innovation Team in Colleges and Universities
of Shandong Province.
[6] a) C.-J. Li, Chem. Rev. 2005, 105, 3095-3166; b) R.
Prebil, S. Stavber, Adv. Synth. Catal. 2014, 356, 266-
1274; c) L. Gu, T. Lu, M. Zhang, L. Tou, Y. Zhang,
Adv. Synth. Catal. 2013, 355, 1077-1082; d) S.
Taketomi, M. Asano, T. Higashi, M. Shoji, T. Sugai, J.
Mol. Catal. B: Enzym. 2012, 84, 83-88; e) D. Vražič, M.
Jereb, K. Laali, S. Stavber, Molecules 2012, 18, 74; f)
A. V. Erkin, V. I. Krutikov, Russ. J. Gen. Chem. 2011,
81, 1699-1704; g) C. Chiappe, E. Leandri, M. Tebano,
Green Chem. 2006, 8, 742-745.
References
[1] For selected reviews, please see: a) C. Sandford, M. A.
Edwards, K. Klunder, D. P Hickey, M. Li, K. Barman,
M. S. Sigman, H. S. White, S. Minteer, Chem. Sci.
2019, DOI: 10.1039/C9SC01545K. For selected
examples, please see: b) B. K. Peters, K. X. Rodriguez,
S. H. Reisberg, S. B. Beil, D. P. Hickey, Y. Kawamata,
M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder,
T. J. Gorey, S. L. Anderson, M. Neurock, S. D. Minteer,
P. S. Baran, Science 2019, 363, 838-845; c) D. P.
Hickey, C. Sandford, Z. Rhodes, T. Gensch, L. R. Fries,
M. S. Sigman, S. D. Minteer, J. Am. Chem. Soc. 2019,
141, 1382-1392; d) Y. Kawamata, J. C. Vantourout, D.
P. Hickey, P. Bai, L. Chen, Q. Hou, W. Qiao, K.
Barman, M. A. Edwards, A. F. Garrido-Castro, J. N.
deGruyter, H. Nakamura, K. Knouse, C. Qin, K. J. Clay,
D. Bao, C. Li, J. T. Starr, C. Garcia-Irizarry, N. Sach, H.
S. White, M. Neurock, S. D. Minteer, P. S. Baran, J.
Am. Chem. Soc. 2019, 141, 6392-6402.
[7] a) H. H. Pokras, H. I. Bernstein, J. Am. Chem. Soc.
1943, 65, 2096-2097; b) X. Zhang, L. Liu, C. Li, RSC
Advances, 2016, 6, 25339-25345; c) K.-J. Kim, K. Kim,
Tetrahedron Lett. 1997, 38, 4227-4230; d) A. Clerici,
O. Porta, Tetrahedron Lett. 1987, 28, 1541-1544; e) F.
Uggeri, C. Giordano, A. Brambilla, R. Annunziata, J.
Org. Chem. 1986, 51, 97-99.
[8] J. Zhang, Y. Tang, Adv. Synth. Catal. 2016, 358, 752-
764.
[9] a) I. V. Loginova, I. Y. Chukicheva, A. V. Kuchin,
Russ. J. Gen. Chem. 2018, 88, 825-828; b) H. A.
Muathen, Monatsh. Chem. 1999, 130, 1493-1497.
[10] a) T. Moriuchi, M. Yamaguchi, K. Kikushima, T.
Hirao, Tetrahedron Lett. 2007, 48, 2667-2670; b) R.
D’Ascoli, M. D’Auria, L. Nucciarelli, G. Piancatelli,
A.Scattri, Tetrahedron Lett. 1980, 21, 4521-4522; c) G.
Cardillo, M. Shimizu, J. Org. Chem. 1977, 42, 4268-
4270.
[2]a) A. J. Brad, L. R. Faulkner, Electrochemical Methods.
Fundamentals and Applications, 2nd ed., Wiley, New
York, 2001; b) A. Jutand, Chem. Rev. 2008, 108, 2300-
2347; c) W. E. Geiger, Coord. Chem. Rev. 2013, 257,
1459-1471.
[3] a) T. Liedtke, P. Spannring, L. Riccardi, A. Gansäuer,
[11] a) J. N. Moorthy, K. Senapati, N. Singhal,
Angew. Chem. Int. Ed. 2018, 57, 5006-5010; b) T.
Tetrahedron Lett. 2009, 50, 2493-2496; b) J. S. Yadav,
6
This article is protected by copyright. All rights reserved.