S. Bhagwanth et al. / Tetrahedron Letters 50 (2009) 1582–1585
1585
S.; Xu, R.; Paruchova, J.; Clader, J. W.; O’Neill, K.; Hawes, B.; Sorota, S.; Margulis,
M.; Tucker, K.; Weston, D. J.; Cox, K. Bioorg. Med. Chem. Lett. 2006, 16, 4262.
5. (a) Lee, S.; Jørgensen, M.; Hartwig, J. F. Org. Lett. 2001, 3, 2729; (b) Huang, X.;
Buchwald, S. L. Org. Lett. 2001, 3, 3417.
6. Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028.
7. Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354.
8. Lee, D-Y.; Hartwig, F. Org. Lett. 2005, 7, 1169.
9. (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722; (b)
Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2003, 125, 6653; (c) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am.
Chem. Soc. 2003, 125, 11818; (d) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int.
Ed. 1999, 38, 2413; (e) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S.
L. J. Org. Chem. 2000, 65, 1158.
10. Rataboul, F.; Zapf, A.; Jackstell, R.; Harkal, S.; Riermeier, T.; Monsees, A.;
Dingerdissen, U.; Beller, M. Chem. Eur. J. 2004, 10, 2983.
11. Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
13978.
We have demonstrated the ability to use a Pd-catalyzed amina-
tion reaction to convert diverse aryl bromides to their corresponding
primary anilines over two steps using benzophenone imine under
mild conditions. Particularly, the catalyst system described allows
this conversion to proceed at 30 °C using a weak inorganic base,
potassium phosphate. The reaction proceeds in a predictable man-
ner with respect to aryl bromide reactivities. Both Pd2dba3ÁCHCl3
and ligand 12 are air-stable and commercially available. The reac-
tions were performed in a multireaction block without the need of
a glove box or Schlenk techniques. The intermediate imines can be
easily converted to the corresponding anilines using procedures de-
scribed previously.3a Work toward Pd-catalyzed aminations of aryl
bromides with other ammonia equivalents using ligand 12 is under-
way and results will be reported in due course.
12. Strieter, E. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 925.
13. (a) Fors, B. P.; Krattiger, P.; Streiter, E.; Buchwald, S. L. Org. Lett. 2008, 10, 3505;
(b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007,
129, 13001.
Acknowledgments
14. Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L. Angew. Chem., Int. Ed.
2006, 45, 4321.
15. Gokel, G. W.; Cram, D. J. J. Org. Chem. 1974, 39, 2445.
This work was carried out as the summer internship project of
S.B., as part of the GlaxoSmithKline Summer Talent Identification
Program. S.B. thanks Professor R. L. Johnson (Department of Medic-
inal Chemistry, University of Minnesota) for the opportunity to
pursue this internship. We also thank Matthew Lochansky and
Zachary Giles (GlaxoSmithKline, RTP, NC) for assistance with the
GC/MS instrumentation.
16. Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 6066.
17. Representative procedure: Methyl-4-aminobenzoate (Table 3, entry 5): A glass
reaction vessel part of a multireaction block equipped with a magnetic stir bar
was charged with, in order: Pd2(dba)3ÁCHCl3 (27 mg, 0.03 mmol), ligand 12
(34 mg, 0.08 mmol), K3PO4 (711 mg, 3.25 mmol), methyl-4-bromobenzoate
(279 mg, 1.30 mmol), benzophenone imine (0.26 mL, 1.56 mmol), and DME
(2.6 mL). The reaction vessel was evacuated and refilled with nitrogen twice.
The reaction mixture was stirred at 30 °C under nitrogen. After 28 h, the
reaction mixture was cooled to ambient temperature, diluted to 50 mL with
diethyl ether, filtered through a pad of Celite, and concentrated in vacuo. The
crude ketimine was suspended in 1:1 1N HCl:THF (13 mL) and stirred at room
temperature for 3 h. THF was then removed by rotary evaporation and the
aqueous residue was washed with 2:1 hexanes:ethyl acetate (50 mL). The
layers were separated and the organic layer was extracted with 4 N HCl
(100 mL). The pooled aqueous layers were basified to pH 9 using solid NaHCO3.
The aqueous layer was then extracted with ethyl acetate (2 Â 100 mL). The
combined organic fractions were dried over Na2SO4, filtered, and concentrated
in vacuo. The residue was purified by flash chromatography (2–90% ethyl
acetate:hexanes) to afford methyl-4-aminobenzoate (179 mg, 91%) as a white,
crystalline solid. 1H NMR (400 MHz, CDCl3) d 7.76–7.92 (m, 2H), 6.55–6.68 (m,
2H), 4.01(s, 2H), 3.84 (s, 3 H); 13C NMR (100 MHz, CDCl3) d 167.15, 150.90,
131.48, 119.40, 113.66, 51.50. The spectroscopic data were in excellent
agreement with reported values.5a
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. (a) Hartwig, J. F.; Shekhar, S.; Shen, Q.; Barrios-Landeros, F. In The Chemistry of
Anilines; Rappoport, Z., Ed.; John Wiley & Sons: West Sussex, England, 2007; p
455; (b) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed Cross Coupling; de Meijere,
A., Diederich, F., Eds., 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004; p 699;
(c) Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., Ed.; John Wiley & Sons: Hoboken, NJ, 2002; p 1051; (d)
Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth. Catal. 2006, 348,
23.
18. The procedure followed for the reaction and work-up was the same for all aryl
bromides reported in Table 3 except for Pd and ligand loading. Three different
procedures were used for cleavage of the intermediate ketimine, depending on
the substrate, as footnoted under Table 3. The procedure B, followed above,
was used in the cleavage reactions of nine intermediates (Table 3, entries 3–
2. King, A. O.; Yasuda, N. In Organometallics in Process Chemistry; Larsen, R. D., Ed.;
Springer: Berlin, Germany, 2004; p 205.
3. (a) Wolfe, J. P.; Åhman, J.; Sadighi, J. P.; Singer, R. A.; Buchwald, S. L. Tetrahedron
Lett. 1997, 38, 6367; (b) Grasa, G. A.; Viciu, M. S.; Huang, J.; Nolan, S. P. J. Org.
Chem. 2001, 66, 7729; (c) Rivas, F. M.; Giessert, A. J.; Diver, S. T. J. Org. Chem.
2002, 67, 1708; (d) Mann, G.; Hartwig, J. F.; Driver, M. S.; Fernandez-Rivas, C. J.
Am. Chem. Soc. 1998, 120, 827; (e) Cioffi, C. L.; Berlin, M. L.; Herr, R. J. Synlett
2004, 841.
11). Procedure A (catalytic transfer hydrogenation) and procedure C
(transamination with hydroxylamine hydrochloride) used for Table 3, entry 1
and Table 3, entry 2, respectively, are detailed in the Supplementary data. All
products are known compounds and were easily identified by comparison of
the spectroscopic data with those reported. The purity of all compounds was
determined by 13C NMR and LC/MS.
4. (a) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-
Roman, L. M. J. Org. Chem. 1999, 64, 5575; (b) McBriar, M. D.; Guzik, H.; Shapiro,
19. Hartwig, J. F.; Richards, S.; Baranano, D.; Paul, F. J. Am. Chem. Soc. 1996, 118,
3626.