Or th oa cylim in es: A New Cla ss of Ch ir a l Au xilia r ies for
Nu cleop h ilic Ad d ition of Or ga n olith iu m Rea gen ts to Im in es
Alessandro A. Boezio, Geoffrey Solberghe, Caroline Lauzon, and Andre´ B. Charette*
De´partement de Chimie, Universite´ de Montre´al, P.O. Box 6128, Station Downtown,
Montre´al, Que´bec, Canada H3C 3J 7
andre.charette@umontreal.ca
Received October 15, 2002
A new class of orthoacylimine-derived chiral auxiliaries has been synthesized and tested in the
nucleophilic addition of organolithium reagents to imines. The precursors can be prepared by an
aza-Wittig reaction between the corresponding orthoacyl azide and a variety of aldehydes in the
presence of trialkylphosphines. The nucleophilic addition of organolithium reagents led to the
addition products in good yields and with good to excellent diastereoselectivities (from 85:15 to
99:1). The chiral, nonracemic secondary amines could be readily obtained under mild hydrolytic
condition. Furthermore, the chiral auxiliary can be recovered in quantitative yield and reconverted
to the starting orthoacyl azide precursor. This method was applied to the synthesis of (S)-t-leucine.
Chiral amines are among the most important func-
tionality in organic chemistry. This class of compounds
are found in numerous natural1 and unnatural bioactive
products,2 and they are the key component of several
chiral ligands3 and auxiliaries.4 It is therefore not
surprising to see that several synthetic methodologies
F IGURE 1. Some examples of the most effective chiral
auxiliaries for nucleophilic addition to imines.
relying on the stereoselective nucleophilic addition to
imines have been developed for their preparation.5 Re-
cently, many effective catalytic systems have been de-
us to investigate whether we could develop a new method
that would allow the generation of chiral, nonracemic
amines as well as the complete recovery of the chiral
veloped for the preparation of R-chiral amines involving
the nucleophilic addition of dialkylzinc reagents.6 Al-
though several chiral auxiliaries are available for syn-
auxiliary or one of its precursors that could be easily
thesizing chiral amines (Figure 1), the most effective ones
reconverted into the required starting substrate. In light
of this, we were intrigued by the possibility of using
orthoacylimines 5 as precursors to chiral amines (Scheme
1). The substrate may show an increased electrophilicity
(1, 2)7 usually cannot be recovered upon cleavage or
require several steps to regenerate a suitable auxiliary
precursor.8 Others (3, 4)9 require some additional steps
for the regeneration of a suitable precursor.
One aspect of our program involving the development
of new routes to chiral, nonracemic secondary amines led
(6) (a) Hermanns, N.; Dahmen, S.; Bolm, C.; Bra¨se, S. Angew. Chem.,
Int. Ed. 2002, 41, 3692-3694. (b) Wei, C.; Li, C.-J . J . Am. Chem. Soc.
2002, 124, 5638-5639. (c) Dahmen, S.; Brase, S. J . Am. Chem. Soc.
2002, 124, 5940-5941. (d) Porter, J . R.; Traverse, J . F.; Hoveyda, A.
H.; Snapper, M. L. J . Am. Chem. Soc. 2001, 123, 984-985. (e) Porter,
J . R.; Traverse, J . F.; Hoveyda, A. H.; Snapper, M. L. J . Am. Chem.
Soc. 2001, 123, 10409-10410. (f) Frantz, D. E.; Fassler, R.; Tomooka,
C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373-381. (g) Fujihara,
H.; Nagai, K.; Tomioka, K. J . Am. Chem. Soc. 2000, 122, 12055-12056.
(h) Boezio, A. A.; Charette, A. B. J . Am. Chem. Soc. 2003, 125, 1692-
1693.
(7) (a) Higashiyama, K.; Inoue, H.; Takahashi, H. Tetrahedron Lett.
1992, 33, 235-238. (b) Higashiyama, K.; Inoue, H.; Takahashi, H.
Tetrahedron 1994, 50, 1083-1092. (c) Davis, F. A.; Zhang, Y.; An-
demichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J . Org. Chem. 1999,
64, 1403-1406. (d) Liu, G.; Cogan, D. A.; Ellman, J . A. J . Am. Chem.
Soc. 1997, 119, 9913-9914. (e) Yang, T. K.; Chen, R. Y.; Lee, D. S.;
Peng, W. S.; J iang, Y. Z.; Mi, A. Q.; J ong, T. T. J . Org. Chem. 1994,
(1) In addition to well-known amino acids and chiral amines, several
natural products can be derived from simple chiral amines. For a recent
example, see: Davis, F. A.; Mohanty, P. K. J . Org. Chem. 2002, 67,
1290-1296.
(2) For recent examples, see: (a) Krishnamurthy, D.; Han, Z.; Wald,
S. A.; Senanayake, C. H. Tetrahedron Lett. 2002, 43, 2331-2333. (b)
Kobayashi, S.; Matsubara, R.; Kitagawa, H. Org. Lett. 2002, 4, 143-
145. (c) Hett, R.; Fang, Q. K.; Gao, Y.; Wald, S. A.; Senanayake, C. H.
Org. Process Res. Dev. 1998, 2, 96-99. (d) Fang, Q. K.; Senanayake,
C. H.; Han, Z.; Morency, C.; Grover, P.; Malone, R. E.; Butler, H.; Wald,
S. A.; Cameron, T. S. Tetrahedron: Asymmetry 1999, 10, 4477-4480.
(e) Spencer, C. M.; Foulds, D.; Peters, D. H. Drugs 1993, 46, 1055.
(3) (a) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed.
1998, 37, 2580-2627. (b) Alexakis, A.; Tomassini, A.; Chouillet, C.;
Roland, S.; Mangeney, P.; Bernardinelli, G. Angew. Chem., Int. Ed.
2000, 39, 4093-4095. (c) Bennani, Y. L.; Hanessian, S. Chem. Rev.
1997, 97, 3161-3195.
(4) (a) J uaristi, E.; Leon-Romo, J . L.; Reyes, A.; Escalante, J .
Tetrahedron: Asymmetry 1999, 10, 2441-2495. (b) Ager, D. J .;
Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835-875.
(5) For excellent reviews, see: (a) Bloch, R. Chem. Rev. 1998, 98,
1407-1438. (b) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry
1997, 8, 1895-1946. (c) J ohansson, A. Contemp. Org. Synth. 1995, 2,
393-408.
59, 914-921. For
a recent report on an improved and practical
auxiliary, see: (f) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, K.;
Senanayake, C. H. J . Am. Chem. Soc. 2002, 124, 7880-7881.
(8) Davis, F. A.; Reddy, R. E.; Szewczyk, J . M. J . Org. Chem. 1995,
60, 7037-7039.
(9) (a) Enders, D.; Schubert, H.; Nu¨bling, C. Angew. Chem., Int. Ed.
Engl. 1986, 25, 1109-1110. (b) Enders, D.; Nu¨bling, C.; Schubert, H.
Liebigs Ann./ Recl 1997, 1089-1100. (c) Laschat, S.; Kunz, H. J . Org.
Chem. 1991, 56, 5883-5889.
10.1021/jo026571m CCC: $25.00 © 2003 American Chemical Society
Published on Web 03/27/2003
J . Org. Chem. 2003, 68, 3241-3245
3241