C O M M U N I C A T I O N S
Scheme 1. Enantioselective Total Synthesis of Elenic Acida
a (a) 5 mol % 12, Cl(CH2)2Cl, 2 h, then H2 (200 psi); 92%. (b) (1) K2CO3, MeOH, CH2Cl2; 80%. (2) I2, PPh3, imid., Et2O, MeCN; 98%. (c) (1)
p-OMeC6H4MgBr, 10 mol % CuI, THF, 4 °C; 49%. (2) LiCCH‚EDA, DMSO, THF; 79%. (d) Cp2ZrCl2, Me3Al, CH2Cl2, 66%. (e) 1 equiv of 2h (90% ee),
2 equiv of 16, 35 mol % 12, THF, 40 °C, 24 h, 3:1 E:Z; 40%. (f) BBr3, CH2Cl2, -78 to 22 °C; 85%.
4, 1051-1054. For a related enantioselective process, see: (d) Luchaco-
Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193.
(3) For catalytic asymmetric allylic substitutions with alkylzincs, see: (a)
Dubner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233-9237. (b)
Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2001, 40, 1456-1460. (c) Malda, H.; van Zijl, A.
W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169-1171. (d)
Ongeri, S.; Piarulli, U.; Roux, M.; Monti, C.; Gennari, C. HelV. Chim.
Acta 2002, 85, 3388-3399. (e) Piarulli, U.; Daubos, P.; Claverie, C.; Roux,
M.; Gennari, C. Angew. Chem., Int. Ed. 2003, 42, 234-236.
(4) Isolation: (a) Juagdan, E. G.; Kalidindi, R. S.; Scheuer, P. J.; Kelly-Borges,
M. Tetrahedron Lett. 1995, 36, 2905-2908. Total syntheses: (b)
Takanashi, S.; Takagi, M.; Takakawa, H.; Mori, K. J. Chem. Soc., Perkin
Trans. 1 1998, 1603-1606. (c) Hoye, R. C.; Baigorria, A. S.; Danielson,
M. E.; Pragman, A. A.; Rajapakse, H. A. J. Org. Chem. 1999, 64, 2450-
2453.
(5) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P. A.; Snapper,
M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668-
1671. See the Supporting Information for details of screening studies.
(6) (a) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001,
123, 755-756. (b) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am.
Chem. Soc. 2002, 124, 779-781. (c) Degrado, S. J.; Mizutani, H.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 13362-13363. (d) Hird,
A. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 2003, 42, 1276-
1279.
The Cu-catalyzed asymmetric alkylation has been used in a
convergent total synthesis of (R)-(-)-elenic acid (Scheme 1). One-
pot catalytic homodimerization/hydrogenation9 of 11 with 5 mol
% 12 (Aldrich)10 delivers 13 in 92% yield. Conversion to diiodide
14 and subsequent alkylations afford alkyne 15, which is converted
to 16 by Zr-mediated alkylalumination.11 Cross-metathesis between
16 and optically enriched 2h, obtained from enantioselective
alkylation of 1e with Me2Zn (entry 9, Table 1), proceeds in the
presence of 35 mol % 12 to afford 17 in 40% yield (80% based on
recovered 16) and 3-4:1 E:Z selectivity.12 Model studies involving
cross-metathesis of 2h and 2-methyl-1-hexene indicate that <5%
erosion of enantiopurity occurs when 12 is used; reactions with
Grubbs’ catalyst13 under identical conditions lead to 10% diminution
in ee. Treatment of 17 with BBr3 delivers (R)-elenic acid.14
Studies toward the development of other catalytic asymmetric
allylic alkylations are in progress.
Acknowledgment. This work was supported by the NIH (GM-
(7) Isolated yields are at times moderate due to product volatility.
(8) Initial studies with secondary alkylzincs (e.g., (i-Pr)2Zn) result in efficient
alkylations that proceed with low enantioselectivity (<20% ee).
(9) Louie, J.; Bielawski, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123,
11312-11313.
(10) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2000, 122, 8168-8179.
47480) and the NSF (CHE-0213009).
Supporting Information Available: Experimental procedures and
spectral and analytical data for reaction products (PDF). This material
(11) Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252-2254.
(12) Higher catalyst loading is required probably due to internal chelation of
the terminal Ru carbene with the neighboring carbonyl oxygen, which
diminishes its reactivity. Metathesis yields suffer from formation of
homodimers of 2h. For utility of 12 in cross-metathesis, see: (a) Cossy,
J.; BouzBouz, S.; Hoveyda, A. H. J. Organomet. Chem. 2001, 624, 327-
332. (b) Randl, S.; Gessler, S.; Wakamatsu, H.; Blechert, S. Synlett 2001,
430-432.
References
(1) For recent examples, see: (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am.
Chem. Soc. 1997, 119, 12414-12415. (b) Ahman, J.; Wolfe, J. P.;
Troutman, M. V.; Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 1918-1919. (c) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc.
1999, 121, 6759-6760. (d) Nakoji, M.; Kanayama, T.; Okino, T.;
Takemoto, Y. Org. Lett. 2001, 3, 3329-3331.
(2) (a) Ibuka, T.; Habashita, H.; Funakoshi, S.; Fujii, N.; Oguschi, Y.; Uyehara,
T.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1990, 29, 801-803. (b)
Venanzi, L. M.; Lehmann, R.; Keil, R.; Lipschutz, B. H. Tetrahedron
Lett. 1992, 33, 5857-5860. (c) Oishi, S.; Kamano, T.; Niida, A.; Odagaki,
Y.; Tamamura, H.; Otaka, A.; Hamanaka, N.; Fujii, N. Org. Lett. 2002,
(13) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(14) Felix, A. M. J. Org. Chem. 1974, 39, 1427-1429.
JA0300618
9
J. AM. CHEM. SOC. VOL. 125, NO. 16, 2003 4691