C O M M U N I C A T I O N S
Table 2. Synthesis of Tetrahydropyridines 13 from Ethyl
reaction with N-tosylaldimines to form tetrahydropyridine deriva-
tives in excellent yields with complete regioselectivity and high
diastereoselectivities. Future effort will focus on expanding the
versatility of these new 1,4-dipole synthons as well as on performing
the annulation in an enantioselective manner.
2-Benzyl-2,3-butadienoates and N-Tosylaldiminesa
entry
R
R′
product yield (%)b
drc
Acknowledgment. We are grateful to UCLA for startup research
funding and to the NSF under Equipment Number CHE-9974928
and CHE-0092036. We thank Dr. Saeed Khan for performing X-ray
crystallographic analysis. O.K. thanks Professors Christopher S.
Foote, Miguel A. Garcia-Garibay, Kendall N. Houk, Mike E. Jung,
Mark Mascal (also for editorial assistance), Craig A. Merlic, and
Fred Wudl for helpful discussions.
1
2
3
4
5
6
7
8
9
Ph (2a)
Ph (2a)
Ph (2a)
Ph (2a)
Ph (2a)
4-CNC6H4 (12a)
2-FC6H4 (12b)
3-OMeC6H4 (12c) 13c
2-MeC6H4 (12d)
Ph (12e)
13a
13b
99
99
99
82
99
99
90
99
80
96
99
98:2
97:3
98:2
88:12
98:2
97:3
95:5
98:2
90:10
83:17
98:2
13d
13ed
13f
4-OMeC6H4 (2b) Ph (12e)
4-NO2C6H4 (2l)
3-ClC6H4 (2d)
2-CF3C6H4 (2h)
Ph (12e)
4-CNC6H4 (12a)
4-CNC6H4 (12a)
3-OMeC6H4 (12c) 13j
3-OMeC6H4 (12c) 13k
13g
13h
13i
Supporting Information Available: Representative experimental
procedures and spectral data for all new compounds (PDF). Crystal-
lographic data for compounds 3a and 13e (CIF). This material is
10 2-ClC6H4 (2e)
11 4-MeC6H4 (2c)
a See Supporting Information for a detailed experimental procedure.
b Isolated yields. c Diastereomer ratio determined by 1H NMR (500 MHz).
d The structure was confirmed by X-ray crystallographic analysis.
References
(1) (a) Michael J. P. In The Alkaloids; Cordell, G. A., Ed.; Academic Press:
San Diego, 2001; Vol. 55. (b) Dewick, P. M. Medicinal Natural Products;
John Wiley and Sons: Chichester, 1997; Chapter 6. (c) Pinder, A. R.
Nat. Prod. Rep. 1992, 9, 491-504 and earlier reviews in this series. (d)
Rubiralta, M.; Giralt, E.; Diez, A. Piperidine. Structure, Preparation,
ReactiVity and Synthetic Applications of Piperidine and Its DeriVatiVes;
Elsvier: Amsterdam, 1991.
(2) To our knowledge there are 13 examples of 1,4-dipoles/1,4-dipole
equivalents that undergo the (formal) [4 + 2] cycloadditions. For selected
references, see: (a) Huisgen, R. In Topics in Heterocyclic Chemistry;
Castle, R., Ed.; John Wiley & Sons: New York, 1969; Chapter 8. (b)
Shair, M. D.; Yoon, T. Y.; Mosny, K. K.; Chou, T. C.; Danishefsky, S.
J. J. Am. Chem. Soc. 1996, 118, 9509-9525. (c) Padwa, A.; Harring, S.
R.; Semones, M. A. J. Org. Chem. 1998, 63, 44-54 and references therein.
(d) Rigby, J. H. Synlett 2000, 1-12 and references therein.
to imine 2 to produce intermediate 6.9 Two consecutive proton-
transfer steps shuffle the proton on the â′-carbon to the â-carbon
of intermediate 6. Thus formed intermediate 9 undergoes 6-endo
cyclization followed by expulsion of PBu3 to generate tetrahydro-
pyridine 3.
The proton-transfer process is believed to be the rate-determining
step on the basis of the observation that 2-methyl-d3-2,3-butadi-
enoate 10 undergoes the annulation reaction with N-tosylbenzaldi-
mine (2a) much more sluggishly than 1 and provides 11 (R ) Ph)
only in 31% yield. This observation prompted us to test the reaction
of 2-(4-cyanobenzyl)-2,3-butadienoate 12a with N-tosylbenzaldi-
mine (2a) (Table 2). Our speculation was that the first proton-
transfer process (6f7) is energetically less favorable than the
second one (8f9) and increased acidity of the proton on the â′-
carbon would accelerate the overall reaction. Indeed, 13a was
obtained in 99% yield in 30 min with high diastreoselectivity (dr,
98:2) favoring the formation of 2,6-cis-adduct. Syntheses of
tetrahydropyridines 13 employing 2-benzyl-2,3-butadienoates10 12
are summarized in Table 2.
(3) The Chemical Abstracts Service database shows 153 books and reviews
on hetero Diels-Alder reaction. For a classical review, see: Boger, D.
L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis;
Academic Press: San Diego, 1987; Chapters 2 and 9.
(4) (a) Sydnes, L. K.; Skattebøl, L. HelV. Chim. Acta 1975, 58, 2061-2073.
(b) McIntosh, J. M.; Sieler, R. A. J. Org. Chem. 1978, 43, 4431-4433.
(c) Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J. Org. Chem. 1988,
53, 3701-3710. (d) Alanine, A. I. D.; Fishwick, C. W. G.; Jones, A. D.;
Mitchell, M. B. Tetrahedron Lett. 1989, 30, 5653-5654. (e) Jung, M.;
Zimmerman, C. N. J. Am. Chem. Soc. 1991, 113, 7813-7814. (f) Spino,
C.; Crawford, J.; Cui, Y.; Gugelchuk, M. J. Chem. Soc., Perkin Trans. 2
1998, 1499-1506. (g) Spino, C.; Pesant, M.; Dory, Y. Angew. Chem.,
Int. Ed. 1998, 37, 3262-3265.
(5) Unpublished results from our laboratory.
The [4 + 2] annulation reactions of 2-benzyl-2,3-butadienoates
12 with N-tosylbenzaldimine (2a) in the presence of PBu3 incor-
porated various aryl groups into the 2-position of tetrahydropyri-
dines (Table 2, 13a-13e) in almost quantitative yields with high
diastereoselectivities. An exception was noted for ethyl 2-(2-
methylbenzyl)-2,3-butadienoate (Table 2, 12d). Upon investigation
of the reactions on further substrate combinations (Table 2, entries
6-11), a clear trend could be discerned, with ortho-substituted aryl
groups providing poorer results. Thus, the presence of an ortho-
substituent of significant steric bulk (Table 2, entries 4, 9, and 10)
on the aryl rings diminishes the reaction yield as well as
compromising the reaction diastereoselectivity. On the contrary,
the presence of an ortho-fluoro group afforded the desired 2,6-cis-
tetrahydropyridine 13b in nearly quantitative yield (99%) with high
diastereoselectivity (dr, 97:3). It was again apparent that the reaction
yield diminished when a nitro-substituted aryl N-tosylimine (2l)
was employed (Table 2, entry 7).
(6) For a review, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001,
34, 535-544. For selected recent reports on phosphine-catalyzed reactions,
see: (b) Kuroda, H.; Tomita, I.; Endo, T. Org. Lett. 2003, 5, 129-131.
(c) Lu, C.; Lu, X. Org. Lett. 2002, 4, 4677-4679. (d) Du, Y.; Lu, X.;
Yu, Y. J. Org. Chem. 2002, 67, 8901-8905. (e) Lu, B.; Davis, R.; Joshi,
B.; Reynolds, D. W. J. Org. Chem. 2002, 67, 4595-4598. (f) Frank, S.
A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404-
2405. (g) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Krische, M. J. J. Am.
Chem. Soc. 2002, 124, 2402-2403. (h) Trost, B. M.; Dake, G. R. J. Am.
Chem. Soc. 1997, 119, 7595-7596. (i) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao,
D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836-3837.
(7) Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461-3464.
(8) For preparative methods for N-tosylimines, see: (a) McKay, W. R.;
Proctor, G. R. J. Chem. Soc., Perkin Trans. 1 1981, 2435-2442. (b) Love,
B. E.; Raje, P. S.; Williams, T. C., II. Synlett 1994, 493-493. (c) Bilodeau,
M. T.; Cunningham, A. M. J. Org. Chem. 1998, 63, 2800-2801. (d)
Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75-77.
(9) Preliminary experiments employing commercially available chiral phos-
phine (S,S)-DIPAMP to form 13e have indicated preferential formation
of one enantiomer in moderate enantiomeric excess (34% ee), indicating
involvement of the phosphine in a crucial carbon-carbon bond-forming
step.
(10) Ethyl 2-benzyl-2,3-butadienoates 12 are prepared via a modified literature
procedure.11 See Supporting Information for a detailed experimental
procedure.
(11) (a) Lang, R. W.; Hansen, H.-J. Organic Syntheses; Wiley & Sons: New
York, 1990; Collect. Vol. 7, pp 232-235. (b) Scholz, D.; Weber-Roth,
S.; Macoratti, E.; Francotte, E. Synth. Commun. 1999, 29, 1143-1155.
In conclusion, our effort to expand the scope of phosphine-
catalyzed annulations has led us to the discovery of a new class of
1,4-dipole synthons, 2-alkyl-2,3-butadienoates. The importance of
this finding was exemplified by their expedient [4 + 2] annulation
JA0344009
9
J. AM. CHEM. SOC. VOL. 125, NO. 16, 2003 4717