Journal of Inorganic and General Chemistry
ARTICLE
Zeitschrift für anorganische und allgemeine Chemie
T. Glöge, D. Petrovic, C. G. Hrib, C. Daniliuc, E. Herdtweck,
P. G. Jones, M. Tamm, Z. Anorg. Allg. Chem. 2010, 636, 2303–
group at C13–15) show that this translation symmetry is not exact.
The NH hydrogen atoms of compounds 4 and 10·HCl·CH2Cl2 were
refined freely. Compound 6 crystallizes in the non-centrosymmetric
space group Cc, but the symmetry is close to C2/c (the complex dis-
plays twofold symmetry within an r.m.s.d. of 0.09 Å). Nevertheless,
the poor refinement in the higher symmetry space group (some high
U values, high wR2 of 0.30) convinces us that Cc is correct. The struc-
ture was refined as an enantiomeric twin with relative component vol-
umes 0.51, 0.49(1). Compound 7 crystallizes with 3THF in the asym-
metric unit; two were refined satisfactorily, but the third had to be
removed mathematically using the routine SQUEEZE (SQUEEZE
forms part of the PLATON program package: A. L. Spek, University
of Utrecht, Netherlands). Similarly, compound 10 crystallized with
2.5THF in the asymmetric unit, of which 1.5 were removed with
SQUEEZE. The dichloromethane solvent molecule of 10·HCl·CH2Cl2
is disordered, but was refined satisfactorily. Compound 8 crystallizes
only by chance in the Sohncke space group P21; the Flack parameter
refined to –0.003(3). The carbon atoms of the chelate ring in com-
pound 9 are disordered over two positions, although one position pre-
dominates; suitable restraints were employed to improve refinement
stability, but dimensions of disordered groups should always be inter-
preted with caution.
2308; f) J. Bogojeski, R. Jelic´, D. Petrovic´, E. Herdtweck, P. G.
Jones, M. Tamm, Z. D. Bugarcˇic´, Dalton Trans. 2011, 40, 6515–
6523.
ˇ
[4] a) D. Petrovic, L. M. R. Hill, P. G. Jones, W. B. Tolman, M.
Tamm, Dalton Trans. 2008, 887–894; b) S. Randoll, P. G. Jones,
M. Tamm, Organometallics 2008, 27, 3232–3239; c) T. Glöge,
D. Petrovic, C. Hrib, P. G. Jones, M. Tamm, Eur. J. Inorg. Chem.
2009, 4538–4546; d) J. Börner, U. Flörke, T. Glöge, T. Bannen-
berg, M. Tamm, M. D. Jones, A. Döring, D. Kuckling, S. Herres-
Pawlis, J. Mol. Catal. A 2010, 316, 139–145; e) S.-A. Filimon,
C. G. Hrib, S. Randoll, I. Neda, P. G. Jones, M. Tamm, Z. Anorg.
Allg. Chem. 2010, 636, 691–699; f) J. Volbeda, P. G. Jones, M.
Tamm, Inorg. Chim. Acta 2014, 422, 158–166; g) T. Glöge, K.
Jess, T. Bannenberg, P. G. Jones, N. Langenscheidt-Dab-
ringhausen, A. Salzer, M. Tamm, Dalton Trans. 2015, 44, 11717–
11724.
[5] M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G.
Jones, J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523–530.
[6] a) K. E. Allen, J. Campos, O. Daugulis, M. Brookhart, ACS Catal.
2015, 5, 456–464; b) T. Vaidya, K. Klimovica, A. M. LaPointe,
I. Keresztes, E. B. Lobkovsky, O. Daugulis, G. W. Coates, J. Am.
Chem. Soc. 2014, 136, 7213–7216; c) D. Zhang, E. T. Nadres, M.
Brookhart, O. Daugulis, Organometallics 2013, 32, 5136–5143;
d) L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc.
1995, 117, 6414–6415.
[7] a) F. E. Hahn, Angew. Chem. Int. Ed. 2006, 45, 1348–1352; b)
F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122–
3172; c) M. Jahnke, F. E. Hahn, in Topics in Organometallic
Chemistry (Eds.: R. Chauvin, Y. Canac), Springer Berlin Heidel-
berg, 2010; d) M. N. Hopkinson, C. Richter, M. Schedler, F. Glor-
ius, Nature 2014, 510, 485–496; e) W. A. Herrmann, C. Köcher,
Angew. Chem. Int. Ed. Engl. 1997, 36, 2162–2187.
[8] a) T. Bernardi, S. Badel, P. Mayer, J. Groelly, P. de Frémont, B.
Jacques, P. Braunstein, M.-L. Teyssot, C. Gaulier, F. Cisnetti, A.
Gautier, S. Roland, ChemMedChem 2014, 9, 1140–1144; b) D.
Brissy, M. Skander, P. Retailleau, G. Frison, A. Marinetti, Orga-
nometallics 2009, 28, 140–151; c) C. Cesari, S. Conti, S. Zacch-
ini, V. Zanotti, M. C. Cassani, R. Mazzoni, Dalton Trans. 2014,
43, 17240–17243; d) B. R. Dible, M. S. Sigman, Inorg. Chem.
2006, 45, 8430–8441; e) A. Flahaut, S. Roland, P. Mangeney, J.
Organomet. Chem. 2007, 692, 5754–5762; f) J. Li, J. Peng, Y.
Bai, G. Lai, X. Li, J. Organomet. Chem. 2011, 696, 2116–2121;
g) K. H. Park, S. Y. Kim, S. U. Son, Y. K. Chung, Eur. J. Org.
Chem. 2003, 2003, 4341–4345; h) S. Roland, W. Cotet, P. Mang-
eney, Eur. J. Inorg. Chem. 2009, 2009, 1796–1805; i) G. Venkata-
chalam, M. Heckenroth, A. Neels, M. Albrecht, Helv. Chim. Acta
2009, 92, 1034–1045.
Crystallographic data (excluding structure factors) for the structures in
this paper have been deposited with the Cambridge Crystallographic
Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies
of the data can be obtained free of charge on quoting the depository
numbers CCDC-1409537 (2), CCDC-1409538 (3), CCDC-1409539
(5), CCDC-1409540 (4), CCDC-1409541 (6·THF), CCDC-1409542
(7·1.5THF),
CCDC-1409543
(8·CH2Cl2),
CCDC-1409544
(10·2.5THF), CCDC-1409545 (10·HCl·CH2Cl2), CCDC-1409546
(9·CH3CN), CCDC-1409547 (5·2HCl·3CH2Cl2), and CCDC-1409548
([Rh(COD)(5)]BF4·3THF
(Fax:
+44-1223-336-033;
E-Mail:
deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).
Supporting Information (see footnote on the first page of this article):
Further X-ray structure determinations of 5·2HCl·3CH2Cl2) and
[Rh(COD)(5)]BF4·3THF; selected NMR spectra.
Acknowledgements
We thank Dr. Cristian G. Hrib, Dr. Constantin G. Daniliuc, and Mr.
Dirk Bockfeld (M.Sc.) for X-ray crystallographic support. S. H.-P.
thanks Prof. Klaus Huber for GPC measurements.
[9] W. Walter, K.-P. Rueß, Justus Liebigs Ann. Chem. 1974, 225–242.
[10] N. Kuhn, T. Kratz, Synthesis 1993, 561–562.
[11] a) N. Burford, A. D. Phillips, H. A. Spinney, K. N. Robertson,
T. S. Cameron, R. McDonald, Inorg. Chem. 2003, 42, 4949–4954;
b) N. Kuhn, J. Fahl, R. Fawzi, M. Steimann, Z. Kristallogr. New
Cryst. Struct. 1998, 213, 434–435; c) J. Pesch, K. Harms, T. Bach,
Eur. J. Org. Chem. 2004, 2004, 2025–2035.
[12] a) A. A. Danopoulos, S. Winston, T. Gelbrich, M. B. Hursthouse,
R. P. Tooze, Chem. Commun. 2002, 482–483; b) X. Hu, I. Castro-
Rodriguez, K. Meyer, Organometallics 2003, 22, 3016–3018; c)
M. Nonnenmacher, D. Kunz, F. Rominger, T. Oeser, Chem. Com-
mun. 2006, 1378–1380; d) J. A. Wright, A. A. Danopoulos, W. B.
Motherwell, R. J. Carroll, S. Ellwood, J. Saßmannshausen, Eur.
J. Inorg. Chem. 2006, 2006, 4857–4865.
[13] a) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc.
1991, 113, 361–363; b) A. J. Arduengo, H. V. R. Dias, R. L. Har-
low, M. Kline, J. Am. Chem. Soc. 1992, 114, 5530–5534; c) A. J.
Arduengo, H. V. R. Dias, D. A. Dixon, R. L. Harlow, W. T. Kloos-
ter, T. F. Koetzle, J. Am. Chem. Soc. 1994, 116, 6812–6822.
[14] H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635–646.
References
[1] X. Wu, M. Tamm, Coord. Chem. Rev. 2014, 260, 116–138.
[2] a) O. Bienemann, A. Hoffmann, S. Herres-Pawlis, Rev. Inorg.
Chem. 2011, 33, 83–108; b) I. dos Santos Vieira, S. Herres-
Pawlis, Eur. J. Inorg. Chem. 2012, 765–774; c) H.-J. Himmel, Z.
Anorg. Allg. Chem. 2013, 639, 1940–1952; d) J. Sundermeyer, V.
Raab, E. Gaoutchenova, U. Garrelts, N. Abacilar, K. Harms, in:
Activating Unreactive Substrates, Wiley-VCH Verlag, Weinheim,
2009; e) S. Herres-Pawlis, Nachr. Chem. 2009, 57, 20–23; f) N.
Kuhn, M. Göhner, M. Grathwohl, J. Wiethoff, G. Frenking, Y.
Chen, Z. Anorg. Allg. Chem. 2003, 629, 793–802.
[3] a) D. Petrovic, T. Glöge, T. Bannenberg, C. G. Hrib, S. Randoll,
P. G. Jones, M. Tamm, Eur. J. Inorg. Chem. 2007, 3472–3475;
b) D. Petrovic, C. G. Hrib, S. Randoll, P. G. Jones, M. Tamm,
Organometallics 2008, 27, 778–783; c) T. K. Panda, C. G. Hrib,
P. G. Jones, J. Jenter, P. W. Roesky, M. Tamm, Eur. J. Inorg.
Chem. 2008, 4270–4279; d) T. Glöge, D. Petrovic, C. G. Hrib,
P. G. Jones, M. Tamm, Z. Naturforsch. 2008, 63b, 1155–1159; e)
Z. Anorg. Allg. Chem. 2015, 2204–2214
2213
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim