513
T. Miura et al.
Letter
Synlett
In the case of 1-benzofuran (7), the cyanomethyl radical
species added regioselectively to form a benzylic radical
species, giving the 2-substituted 2,3-dihydro-1-benzofuran
8 (Scheme 3).
References and Notes
(1) For reviews, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J.
Chem. Soc. Rev. 2011, 40, 102. (b) Skubi, K. L.; Blum, T. R.; Yoon,
T. P. Chem. Rev. 2016, 116, 10035. (c) Romero, N. A.; Nicewicz, D.
A. Chem. Rev. 2016, 116, 10075. (d) Twilton, J.; Le, C.; Zhang, P.;
Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem.
2017, 1, 0052. (e) Lee, K. N.; Ngai, M.-Y. Chem. Commun. 2017,
53, 13093. (f) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew.
Chem. Int. Ed. 2018, 57, 10034.
(2) For photoinduced reactions using phosphonium salts as the
radical source, see: (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L.
Angew. Chem. Int. Ed. 2016, 55, 1479. (b) Panferova, L. I.;
Tsymbal, A. V.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org.
Lett. 2016, 18, 996.
O
fac-Ir(ppy)3 (1.0 mol%)
CN
7
O
C6F5SH (20 mol%)
+
ascorbic acid (10 equiv)
KHSO4, CH3CN/H2O
Ph3P CHCN
8 50%
2 (2.0 equiv)
r.t., 40 h, blue LEDs
Scheme 3 The addition reaction to 1-benzofuran (7)
(3) For 1,2-bromo[(ethoxycarbonyl)methylation] of alkenes with
BrCH(R)CO2Et as the radical source, see: (a) Nguyen, J. D.;
Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2011, 133, 4160. (b) Arceo, E.; Montroni, E.;
Melchiorre, P. Angew. Chem. Int. Ed. 2014, 53, 12064. (c) Cheng,
J.; Cheng, Y.; Xie, J.; Zhu, C. Org. Lett. 2017, 19, 6452.
(d) Magagnano, G.; Gualandi, A.; Marchini, M.; Mengozzi, L.;
Ceroni, P.; Cozzi, P. G. Chem. Commun. 2017, 53, 1591. For a
recent review, see: (e) Courant, T.; Masson, G. J. Org. Chem.
2016, 81, 6945.
Notably, even a branched -cyanoethyl group was at-
tached to the C=C double bond of 1a when -cyanoethyl-
phophorus ylide 9 was employed (Scheme 4).
fac-Ir(ppy)3 (2.0 mol%)
Ph
1a
C6F5SH (20 mol%)
CH3
CN
+
ascorbic acid (10 equiv)
KHSO4, CH3CN/H2O
CH3
CN
Ph
Ph3P
10 32%
r.t., 64 h, blue LEDs
9 (5.0 equiv)
(4) Miura, T.; Funakoshi, Y.; Nakahashi, J.; Moriyama, D.;
Murakami, M. Angew. Chem. Int. Ed. 2018, 57, 15455.
(5) For the use of thiols as sources of electrophilic hydrogen atoms
and the subsequent reactions between the resulting thiyl radi-
cals and ascorbate anions, see: Guo, X.; Wenger, O. S. Angew.
Chem. Int. Ed. 2018, 57, 2469.
(6) For a similar photoinduced elongation of alkenes using BrCH2-
CO2Et as the radical source, see: Sumino, S.; Fusano, A.; Ryu, I.
Org. Lett. 2013, 15, 2826.
(7) For a review on 1,2-addition reactions with alkanenitriles as
radical sources, see: Chu, X.-Q.; Ge, D.; Shen, Z.-L.; Loh, T.-P. ACS
Catal. 2018, 8, 258.
(8) For 1,2-hydro(cyanomethylation) of alkenes by using CH3CN as
the radical source, see: (a) Li, Z.; Xiao, Y.; Liu, Z.-Q. Chem.
Commun. 2015, 51, 9969. See also: (b) Bruno, J. W.; Marks, T. J.;
Lewis, F. D. J. Am. Chem. Soc. 1981, 103, 3608. (c) Sonawane, H.
R.; Bellur, N. S.; Shah, V. G. J. Chem. Soc., Chem. Commun. 1990,
1603.
Scheme 4 The reaction with the α-cyanoethylphosphonium ylide 9
A similar reaction to form elongated aliphatic nitriles
from alkenes has been reported,8 in which a cyanomethyl
radical species is generated from CH3CN by using an excess
of dicumyl peroxide at a high temperature; these potential-
ly hazardous conditions significantly limit the synthetic
value of the method. The present reaction uses cyanometh-
ylphosphonium ylide, which is stable and easily accessible,
as the radical source, thereby providing a convenient meth-
od for synthesizing elongated aliphatic nitriles from
alkenes.17
Funding Information
(9) For 1,2-difunctionalization of alkenes by using CH3CN as the
radical source, see: (a) Bunescu, A.; Wang, Q.; Zhu, J. Angew.
Chem. Int. Ed. 2015, 54, 3132. (b) Chatalova-Sazepin, C.; Wang,
Q.; Sammis, G. M.; Zhu, J. Angew. Chem. Int. Ed. 2015, 54, 5443.
(c) Lan, X.-W.; Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen,
S.-L.; Xing, Y. Org. Lett. 2016, 18, 5986. (d) Wu, X.; Riedel, J.;
Dong, V. M. Angew. Chem. Int. Ed. 2017, 56, 11589. (e) Liu, Y.-Y.;
Yang, X.-H.; Song, R.-J.; Luo, S.; Li, J.-H. Nat. Commun. 2017, 8,
14720.
This work was supported by JSPS KAKENHI [Scientific Research (S)
(15H05756) and (C) (16K05694)]
J
S
P
S
K
A
K
E
N
H
I
(1
5
H
0
5
7
5
6)J
S
P
S
K
A
K
E
N
H
I
(1
6
K
0
5
6
9
4)
Acknowledgment
We thank Mr. H. Nikishima (Kyoto University) for his experimental
contribution at a preliminary stage.
(10) For 1,2-bromo(cyanomethylation) of alkenes by using BrCH2CN
as the radical source, see: (a) Voutyritsa, E.; Triandafillidi, I.;
Kokotos, C. G. ChemCatChem 2018, 10, 2466. (b) Voutyritsa, E.;
Nikitas, N. F.; Apostolopoulou, M. K.; Gerogiannopoulou, A. D.
D.; Kokotos, C. G. Synthesis 2018, 50, 3395; See also refs. 3 (b)
and 3 (d).
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(11) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968.
(12) Creutz, C. Inorg. Chem. 1981, 20, 4449.
(13) Warren, J. J.; Mayer, J. M. J. Am. Chem. Soc. 2010, 132, 7784.
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, 511–514