L. Media6illa Urbaneja et al. / Tetrahedron Letters 43 (2002) 7887–7890
7889
Table 2. Copper-catalyzed enantioselective 1,4-addition of diethylzinc to enone rac-4a
Entry
Ligand
Time (h)
(2R,5S)-5 (%)
(R,R)-5 (%)
(S,S)-5 (%)
(2S,5R)-5 (%)
(R)-4 (%)
(S)-4 (%)
1
2
3
4
5
(Sa,R,R)-L1
(Sa,R,R)-L1b
(R,R)-L2
(R,R)-L3
(R,R)-L4
36
36
12
72
72
27.7
3.2
5.9
5.2
6.5
16.9
2.6
42.2
5.4
51.3
35.5
50.5
6.5
0.4
0.4
0.6
3.0
1.9
3.7
52.7
0.8
42.3
29.0
0
5.6
0
37.6
5.8
6.6
50.2
a Product ratio determined by gas chromatography on heptakis-(2,6-di-O-methyl-3-O-pentyl)-g-cyclodextrin.10,12,13
b Reaction with 0.8 equiv. of Et2Zn, 1 mol% of Cu(OTf)2, and 2 mol% of (Sa,R,R)-L1.
trans isomer. The latter strategy allows the deliberate
preparation of any stereoisomer of a 2,5-disubstituted
ketone. Further work with differently substituted
enones is continuing in our laboratories.
Acknowledgements
This work was supported by the Deutsche Forschungs-
gemeinschaft, the European Community (COST D12/
0022/99 and D24/0003/01), the Fonds der Chemischen
Industrie, and the Swiss National Fund.
References
1. Modern Organocopper Chemistry; Krause, N., Ed.;
Wiley-VCH: Weinheim, 2002.
2. (a) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem., in
press; (b) Krause, N.; Hoffmann-Ro¨der, A. Synthesis
2001, 171–196; (c) Feringa, B. L.; Naasz, R.; Imbos, R.;
Arnold, L. A. In Modern Organocopper Chemistry;
Krause, N., Ed.; Wiley-VCH: Weinheim, 2002; pp. 224–
258.
3. Naasz, R.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L.
Angew. Chem. 2001, 113, 953–956; Angew. Chem., Int.
Ed. 2001, 40, 927–930.
4. Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.;
De Vries, A. H. M. Angew. Chem. 1997, 109, 2733–2736;
Angew. Chem., Int. Ed. Engl. 1997, 36, 2620–2623.
5. Alexakis, A.; Rosset, S.; Allamand, J.; March, S.; Guil-
len, F.; Benhaim, C. Synlett 2001, 1375–1378.
6. Bispidine-derived ligands (Huttenloch, O.; Spieler, J.;
Waldmann, H. Chem. Eur. J. 2000, 6, 671–675) were also
examined but gave inferior enantioselectivities.
7. Cory, R. M.; Chan, D. M. T.; Naguib, Y. M. A.; Rastall,
M. H.; Renneboog, R. M. J. Org. Chem. 1980, 45,
1852–1863.
Figure 4. Kinetic resolution of enone 4 by copper-catalyzed
1,4-addition of di-n-butylzinc (product ratio determined by
gas chromatography on heptakis-(2,6-di-O-methyl-3-O-pent-
yl)-g-cyclodextrin; (R,R)- and (S,S)-6 could not be sepa-
rated).
A similar efficiency was observed in the corresponding
Michael addition of di-n-butylzinc to rac-4, catalyzed
by Cu(OTf)2 and (Sa,R,R)-L1 (Fig. 4) which was even
slower than the addition of diethylzinc. After 48 h at
−20°C, 55% of enone (R)-4 was recovered with 84% ee,
whereas enantiomerically pure enone resulted after 96 h
(78% consumption).
8. (a) Solladie´, G.; Hutt, J. J. Org. Chem. 1987, 52, 3560–
3566; (b) Laval, G.; Audran, G.; Galano, J.-M.; Monti,
H. J. Org. Chem. 2000, 65, 3551–3554.
9. Equilibrium ratio obtained by base-catalyzed epimeriza-
tion with NaOMe/MeOH: trans-2:cis-2=91:9.
10. Slight deviations from the expected 1:1 ratio of (2R)- and
(2S)-enantiomers are probably due to a slow epimeriza-
tion even under the less acidic workup conditions.
To summarize the results of this work, we have found
that copper-catalyzed enantioselective Michael addi-
tions of organozinc reagents to 6-substituted enones
can be conducted ‘substrate-oriented’, i.e. as a kinetic
resolution, or ‘product-oriented’ with or without subse-
quent enolization to the thermodynamically more stable