10.1002/chem.202005228
Chemistry - A European Journal
COMMUNICATION
In conclusion, AGA is a powerful tool to produce oligosaccharides that
are essentials for systematic structural analysis. Five COS were
assembled with full-control over length as well as acetylation degree
and pattern. Four unnatural hybrid chitin-cellulose oligomers were
prepared to study the importance of the amino group in chitosan.
Single molecule as well as concentrated MD simulations showed that
all COS analogues have more conformational freedom than the fully
N-acetylated hexamer N6, resulting in amorphous aggregation upon
drying. The hybrid compounds showed a similar conformational
behavior as the neutral partially acetylated COS. Amine protonation
results in intramolecular interactions, detected by NMR, that stabilize
new geometries. This finding stresses the importance of the pattern
of de-acetylation of COS, because these interactions exist only in the
presence of a deacetylated GlcN unit (K+). Therefore, knowing the
position of the deacetylated residue in the polymer is essential for the
description of the COS conformation. This observation is particularly
relevant to clarify molecular mechanisms of chitosan-protein
interactions, as glycoside hydrolases binding is affected by the
orientation of the C6 side chain.[27]
[8]
S. Basa, M. Nampally, T. Honorato, S. N. Das, A. R. Podile, N.
E. El Gueddari, B. M. Moerschbacher, J. Am. Chem. Soc. 2020,
142, 1975-1986.
L. Grifoll-Romero, S. Pascual, H. Aragunde, X. Biarnés, A.
Planas, Polymers 2018, 10, 352.
a) S. Skovstrup, S. G. Hansen, T. Skrydstrup, B. Schiøtt,
Biomacromolecules 2010, 11, 3196-3207; b) E. F. Franca, R. D.
Lins, L. C. G. Freitas, T. P. Straatsma, J. Chem. Theory Comput.
2008, 4, 2141-2149; c) A. Almond, J. K. Sheehan, Glycobiology
2003, 13, 255-264; d) M. T. McDonnell, D. A. Greeley, K. M.
Kit, D. J. Keffer, J. Phys. Chem. B 2016, 120, 8997-9010.
a) Z. Yu, D. Lau, Journal of Molecular Modeling 2015, 21, 128;
b) L. Tsereteli, A. Grafmüller, PLoS One 2017, 12, e0180938; c)
J. D. Schneible, A. Singhal, R. L. Lilova, C. K. Hall, A.
Grafmüller, S. Menegatti, Biomacromolecules 2019, 20, 3126-
3141.
[9]
[10]
[11]
[12]
[13]
M. X. Weinhold, J. C. M. Sauvageau, J. Kumirska, J. Thöming,
Carbohydr. Polym. 2009, 78, 678-684.
a) L. Hembach, S. Cord-Landwehr, B. M. Moerschbacher, Sci.
Rep. 2017, 7, 17692; b) S. N. Hamer, S. Cord-Landwehr, X.
Biarnés, A. Planas, H. Waegeman, B. M. Moerschbacher, S.
Kolkenbrock, Sci. Rep. 2015, 5, 8716.
[14]
R. Enugala, L. C. R. Carvalho, M. J. Dias Pires, M. M. B.
Marques, Chem. – Asian J. 2012, 7, 2482-2501.
[15]
[16]
Y. Yang, B. Yu, Tetrahedron 2014, 70, 1023-1046.
a) M. Guberman, P. H. Seeberger, J. Am. Chem. Soc. 2019, 141,
5581-5592; b) M. Delbianco, A. Kononov, A. Poveda, Y. Yu, T.
Diercks, J. Jiménez-Barbero, P. H. Seeberger, J. Am. Chem. Soc.
2018, 140, 5421-5426.
a) Y. Yu, T. Tyrikos-Ergas, Y. Zhu, G. Fittolani, V. Bordoni, A.
Singhal, R. J. Fair, A. Grafmüller, P. H. Seeberger, M. Delbianco,
Angew. Chem., Int. Ed. 2019, 58, 1433-7851; b) Y. Zhu, T.
Tyrikos-Ergas, K. Schiefelbein, A. Grafmüller, P. H. Seeberger,
M. Delbianco, Org. Biomol. Chem. 2020, 18, 1349-1353; c) M.
Panza, S. G. Pistorio, K. J. Stine, A. V. Demchenko, Chem. Rev.
2018, 118, 8105-8150.
Acknowledgements
We thank the Max-Planck Society, the Minerva Fast Track
Program, and the MPG-FhG Cooperation Project Glyco3Dysplay,
for generous financial support.
[17]
Keywords: carbohydrates • chitin • chitosan • MD simulations •
structure-property correlations
[18]
[19]
D. Crich, Acc. Chem. Res. 2010, 43, 1144-1153.
[1]
[2]
[3]
K. Kurita, Mar Biotechnol (NY) 2006, 8, 203-226.
M. J. P. i. p. s. Rinaudo, 2006, 31, 603-632.
a) S. Gim, Y. Zhu, P. H. Seeberger, M. Delbianco, Wiley
K. Le Mai Hoang, A. Pardo-Vargas, Y. Zhu, Y. Yu, M. Loria, M.
Delbianco, P. H. Seeberger, J. Am. Chem. Soc. 2019, 141, 9079-
9086.
D. Crich, V. Dudkin, J. Am. Chem. Soc. 2001, 123, 6819-6825.
C.-W. Chang, M.-H. Lin, C.-H. Wu, T.-Y. Chiang, C.-C. Wang,
J. Org. Chem. 2020.
a) R. J. Woods, Chem. Rev. 2018, 118, 8005-8024; b) X. Xiong,
Z. Chen, B. P. Cossins, Z. Xu, Q. Shao, K. Ding, W. Zhu, J. Shi,
Carbohydr. Res. 2015, 401, 73-81; c) J. r. Sauter, A. Grafmꢀller,
J. Chem. Theory Comput. 2015, 11, 1765-1774; d) M. Marianski,
A. Supady, T. Ingram, M. Schneider, C. Baldauf, J. Chem. Theory
Comput. 2016, 12, 6157-6168.
Interdisciplinary
Reviews:
Nanomedicine
and
[20]
[21]
Nanobiotechnology 2019, 0, e1558; b) H. Merzendorfer, E.
Cohen, Extracellular Sugar-Based Biopolymers Matrices 2019,
12, 541-624.
J. Wattjes, S. Sreekumar, C. Richter, S. Cord-Landwehr, R. Singh,
N. E. El Gueddari, B. M. Moerschbacher, Reactive and
Functional Polymers 2020, 151, 104583.
S. J. Van Dyken, R. M. Locksley, J Allergy Clin Immunol 2018,
142, 364-369.
a) S. Naqvi, B. M. Moerschbacher, Crit Rev Biotechnol 2017, 37,
11-25; b) L. P. Erwig, N. A. R. Gow, Nat. Rev. Microbiol. 2016,
14, 163-176; c) K. Li, R. Xing, S. Liu, P. Li, J. Agric. Food Chem.
2020.
K. Fuchs, Y. Cardona Gloria, O.-O. Wolz, F. Herster, L. Sharma,
C. A. Dillen, C. Täumer, S. Dickhöfer, Z. Bittner, T.-M. Dang, A.
Singh, D. Haischer, M. A. Schlöffel, K. J. Koymans, T.
Sanmuganantham, M. Krach, T. Roger, D. Le Roy, N. A.
Schilling, F. Frauhammer, L. S. Miller, T. Nürnberger, S.
LeibundGut-Landmann, A. A. Gust, B. Macek, M. Frank, C.
Gouttefangeas, C. S. Dela Cruz, D. Hartl, A. N. Weber, EMBO
Rep. 2018, 19, e46065.
[22]
[4]
[5]
[6]
[23]
H. Booth, K. A. Khedhair, J. Chem. Soc., Chem. Commun. 1985,
467-468.
[24]
[25]
D. G. Davis, A. Bax, J. Am. Chem. Soc. 1985, 107, 7197-7198.
a) H. Amarasekara, S. Dharuman, T. Kato, D. Crich, J. Org.
Chem. 2018, 83, 881-897; b) M. G. Pirrone, T. Matsushita, A.
Vasella, D. Crich, Carbohydr. Res. 2020, 491, 107984.
A. Singh, M. B. Tessier, K. Pederson, X. Wang, A. P. Venot, G.-
J. Boons, J. H. Prestegard, R. J. Woods, Can. J. Chem. 2016, 94,
927-935.
[7]
[26]
[27]
J. C. K. Quirke, D. Crich, J. Am. Chem. Soc. 2020, 142, 16965-
16973.
4
This article is protected by copyright. All rights reserved.