Journal of the American Chemical Society
Communication
Int. Ed. 2010, 49, 3791. (c) Wu, A.; Patrick, B. O.; Chung, E.; James, B. R.
Dalton Trans. 2012, 41, 11093. (d) Chan, J. M. W.; Bauer, S.; Sorek, H.;
Sreekumar, S.; Wang, K.; Toste, F. D. ACS Catal. 2013, 3, 1369.
(e) Kleine, T.; Buendia, J.; Bolm, C. Green Chem. 2013, 15, 160.
(9) (a) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen,
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
‡J.D.N. and B.S.M. contributed equally.
B. M. Chem. Rev. 2010, 110, 3552. (b) Tuck, C. O.; Per
T.; Sheldon, R. A.; Poliakoff, M. Science 2012, 337, 695.
́ ́
ez, E.; Horvath, I.
Notes
(10) (a) Bobbitt, J. M. J. Org. Chem. 1998, 63, 9367. (b) Ciriminna, R.;
Pagaliaro, M. Org. Process Res. Dev. 2010, 14, 245. (c) Mercadante, M. A.;
Kelly, C. B.; Bobbitt, J. M.; Tilley, L. J.; Leadbeater, N. E. Nat. Protoc.
2013, 8, 666.
(11) Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.;
Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126,
2763.
(12) Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T. D.;
Paton, R. S.; Beckham, G. T. J. Phys. Chem. Lett. 2011, 2, 2846.
(13) Hasegawa, E.; Takizawa, S.; Seida, T.; Yamaguchi, A.; Yamaguchi,
N.; Chiba, N.; Takahashi, T.; Ikeda, H.; Akiyama, K. Tetrahedron 2006,
62, 6581.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the University of Michigan, the Alfred P.
Sloan Foundation, and the Camille and Henry Dreyfus
Foundation is gratefully acknowledged. J.D.N. thanks The
American Chemical Society Division of Organic Chemistry
and Amgen for a graduate fellowship. B.S.M. thanks Vertex for a
graduate fellowship.
(14) Larraufie, M.-L.; Pellet, R.; Fensterbank, L.; Goddard, J.-P.;
Lacote, E.; Malacria, M.; Ollivier, C. Angew. Chem., Int. Ed. 2011, 50,
̂
4463.
(15) Tucker, J. W.; Narayanam, J. M. R.; Shah, P. S.; Stephenson, C. R.
J. Chem. Commun. 2011, 47, 5040.
(16) (a) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2009, 131, 8756. (b) Nguyen, J. D.; D’Amato, E. M.;
Narayanam, J. M. R.; Stephenson, C. R. J. Nature Chem. 2012, 4, 854.
(17) For a recent review on the application of photoredox catalysis in
organic synthesis: Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem.
Rev. 2013, 113, 5322.
(18) Selected examples of visible light photoredox catalysis for organic
transformations: (a) Nicewicz, D.; MacMillan, D. W. C. Science 2008,
322, 77. (b) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am.
Chem. Soc. 2008, 130, 12886. (c) Andrews, R. S.; Becker, J. J.; Gagne, M.
R. Angew. Chem., Int. Ed. 2010, 49, 7274. (d) Kalyani, D.; McMurtrey, K.
B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
REFERENCES
■
(1) Boerjan, W.; Ralph, J.; Baucher, M. Annu. Rev. Plant Biol. 2003, 54,
519.
(2) Chakar, F. S.; Ragauskas, A. J. Ind. Crops Prod. 2004, 20, 131.
(3) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.;
Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.; Hallett, J. P.; Leak, D. J.;
Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T.
Science 2006, 311, 484.
(4) (a) Lin, S. Y.; Lin, I. S. In Ullmann’s Encylcopedia of Industrial
Chemistry, 5th ed.; VCH: Weinheim, Germany, 1990; Vol. 15, p 305.
(b) Bozell, J. J.; Holladay, J. E.; Johnson, D.; White, J. F. Top Value Added
Candidates from Biomass, Vol. II: Results of Screening for Potential
Candidates from Biorefinery Lignin; Pacific Northwest National
Laboratory: Richland, WA, 2007.
(5) (a) Varshney, A. K.; Patel, D. J. Sci. Ind. Res. 1988, 47, 315.
(b) Scholze, B.; Hanser, C.; Meier, D. J. Anal. Appl. Pyrol. 2001, 58−59,
387. (c) Scholze, B.; Meier, D. J. Anal. Appl. Pyrol. 2001, 60, 41.
(6) (a) DiCosimo, R.; Szabo, H. C. J. Org. Chem. 1988, 53, 1673.
(b) Crestini, C.; Caponi, M. C.; Argyropoulos, D. S.; Saladino, R. Bioorg.
Med. Chem. 2006, 14, 5292. (c) Voitl, T.; von Rohr, P. R. ChemSusChem
(e) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852. (f) Kohls, P.; Jadhav,
̈
D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672. (g) Tarantino, K. T.;
Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
(h) Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135,
10334. (i) Guillaume, R.; McCallum, T.; Morin, M.; Gagosz, F.;
Barriault, L. Angew. Chem., Int. Ed. 2013, 52, 13342. (j) Bergonzini, G.;
Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.; Stephenson, C. R. J.
Chem. Sci. 2014, 5, 112.
2008, 1, 763. (d) Stark, K.; Taccardi, N.; Bosmann, A.; Wasserscheid, P.
̈
ChemSusChem 2010, 3, 719. (e) Cho, D. W.; Parthasarathi, R.; Pimentel,
A. S.; Maestas, G. D.; Park, H. J.; Yoon, U. C.; Dunaway-Mariano, D.;
Gnanakaran, S.; Langan, P.; Mariano, P. S. J. Org. Chem. 2010, 75, 6549.
(f) Badamali, S. K.; Luque, R.; Clark, J. H.; Breeden, S. W. Catal.
Commun. 2011, 12, 993. (g) Sedai, B.; Diaz-Urrutia, C.; Baker, R. T.;
Wu, R.; Silks, L. A.; Hanson, S. K. ACS Catal. 2011, 1, 794. (h) Hanson,
S. K.; Wu, R.; Silks, L. A. Angew. Chem., Int. Ed. 2012, 51, 3410.
(i) Biannic, B.; Bozell, J. J. Org. Lett. 2013, 15, 2730. (j) Lim, S. K.;
Nahm, K.; Ra, C. S.; Cho, D. W.; Yoon, U. C.; Latham, J. A.; Dunaway-
Mariano, D.; Mariano, P. S. J. Org. Chem. 2013, 78, 9431. (k) Sedai, B.;
Diaz-Urrutia, C.; Baker, T.; Wu, R.; Silks, L. A.; Hanson, S. K. ACS Catal.
2013, 3, 3111.
(19) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Von
Zelewsky, V. Coord. Chem. Rev. 1988, 84, 85.
(20) Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R.
J. Inorg. Chem. 1991, 30, 1685.
(21) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.,
Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
(22) Kern, J.-M.; Sauvage, J.-P. J. Chem. Soc., Chem. Commun. 1987,
546.
(23) Sivaraja, M.; Goodin, D. B.; Smith, M.; Hoffman, B. M. Science
1989, 245, 738.
(7) (a) Harris, E. E.; D’Ianni, J.; Adkins, H. J. Am. Chem. Soc. 1938, 60,
1467. (b) Cyr, A.; Chiltz, F.; Jeanson, P.; Martel, A.; Brossard, L.;
Lessard, J.; Menard, H. Can. J. Chem. 2000, 78, 307. (c) Yan, N.; Zhao,
́
(24) See Supporting Information for more details.
(25) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Ionization
Energies, Electron Affinities, and Reduction Potentials. In Handbook of
Photochemistry, 3rd ed.; CRC Press; Boca Raton, FL, 2006; pp 495−527.
(26) Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J. Am.
Chem. Soc. 2013, 135, 6415.
(27) See Supporting Information for full substrate scope of [4-AcNH-
TEMPO]BF4-mediated oxidation.
(28) For a recent review on flow photochemistry: Knowles, J. P.;
Elliott, L. D.; Booker-Milburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025.
(29) Nguyen, J. D.; Reiss, B.; Dai, C.; Stephenson, C. R. J. Chem.
Commun. 2013, 49, 4352.
C.; Dyson, P. J.; Wang, C.; Liu, L.-t.; Kou, Y. ChemSusChem 2008, 1, 626.
(d) Nagy, M.; David, K.; Britovsek, G. J. P.; Ragauskas, A. J.
Holzforschung 2009, 63, 513. (e) Barta, K.; Matson, T. D.; Fettig, M.
L.; Scott, S. L.; Iretskii, A. V.; Ford, P. C. Green Chem. 2010, 12, 1640.
(f) Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439. (g) Desnoyer, A.
N.; Fartel, B.; MacLeod, K. C.; Patrick, B. O.; Smith, K. M.
Organometallics 2012, 31, 7625. (h) Sergeev, A. G.; Webb, J. D.;
Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 20226. (i) Parsell, T. H.;
Owen, B. C.; Klein, I.; Jarrell, T. M.; Marcuum, C. L.; Hupert, L. J.;
Amundson, L. M.; Kenttamaa, H. I.; Ribeiro, F.; Miller, J. T.; Abu-Omar,
M. M. Chem. Sci. 2013, 4, 806. (j) Song, Q.; Wang, P.; Cau, J.; Wang, Y.;
Zhanh, J.; Yu, W.; Xu, J. Energy Environ. Sci. 2013, 6, 994.
̈
(8) (a) Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J.
Am. Chem. Soc. 2010, 132, 12554. (b) Son, S.; Toste, F. D. Angew. Chem.,
D
dx.doi.org/10.1021/ja4113462 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX