1844
M.-j. Bu et al.
Letter
Synlett
Table 3 (continued)
In summary, we have developed a general and efficient
ascorbic acid promoted carbon–sulfur bond formation un-
der mild conditions. The reaction provides the desired
product with a high yield and tolerates a variety of func-
tional groups. Comparing to the traditional Stadler–Ziegler
reaction and Noël’s modern version, this one-pot procedure
is simple, metal-free, and requires neither heating nor irra-
diation. This strategy could also be used in the construction
of carbon–selenium bond.
Entry
R2
Product
Yield (%)b
85
SMe
8c
Me
O2N
3t
S
9c
10
11
n-Pr
78
79
70
O2N
3u
Acknowledgment
S
We gratefully acknowledge Natural Science Foundation of Jiangsu
Province (BK 20131346) for financial support.
Cy
O2N
3v
S
Supporting Information
OH
CH2CH2OH
Supporting information for this article is available online at
O2N
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
3w
References and Notes
S
12
Bn
82
(1) (a) Parry, R. J. Tetrahedron 1983, 39, 1215. (b) Jacob, C. Nat. Prod.
Rep. 2006, 23, 851. (c) Fontecave, M.; Ollagnier-de-Choudens, S.;
Mulliez, E. Chem. Rev. 2003, 103, 2149. (d) Procter, D. J. J. Chem.
Soc., Perkin Trans. 1 2001, 335. (e) Rayner, C. M. Contemp. Org.
Synth. 1996, 3, 499. (f) Hoyle, C. E.; Lee, T. Y.; Roper, T. J. Polym.
Sci., Part A: Polym. Chem. 2004, 42, 5301. (g) Clemenson, P. I.
Coord. Chem. Rev. 1990, 106, 171.
O2N
3x
a Reaction conditions: 1b (0.2 mmol), 2 (0.2 mmol), ascorbic acid (0.1 mmol)
in DMSO (0.1 mL), t-BuONO (0.3 mmol), MeCN (1 mL), inert atmosphere,
20 °C, 4 h.
b Isolated yields.
c With 2 equiv of the disulfide.
(2) (a) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S.
L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841. (b) Arrayas, R. G.;
Carretero, J. C. Chem. Commun. 2011, 47, 2207.
(3) For selected reviews, see: (a) Beletskaya, I. P.; Ananikov, V. P.
Chem. Rev. 2011, 111, 1596. (b) Kondo, T.; Mitsudo, T.-a. Chem.
Rev. 2000, 100, 3205. (c) Hoyle, C. E.; Lowe, A. B.; Bowman, C. N.
Chem. Soc. Rev. 2010, 39, 1355. (d) Chauhan, P.; Mahajan, S.;
Enders, D. Chem. Rev. 2014, 114, 8807. (e) Ley, S. V.; Thomas, A.
W. Angew. Chem. Int. Ed. 2003, 42, 5400.
(4) (a) Eichman, C. C.; Stambuli, J. P. Molecules 2011, 16, 590.
(b) Baig, R. B. N.; Varma, R. S. Chem. Commun. 2012, 48, 2582.
(c) Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Chem. Commun. 2011,
47, 9188. (d) Kundu, D.; Ahammed, S.; Ranu, B. C. Green Chem.
2012, 14, 2024. (e) Cheng, J.-H.; Ramesh, C.; Kao, H.-L.; Wang,
Y.-J.; Chan, C.-C.; Lee, C.-F. J. Org. Chem. 2012, 77, 10369.
(5) (a) Stadler, O. Ber. Dtsch. Chem. Ges. 1884, 17, 2075. (b) Ziegler, J.
H. Ber. Dtsch. Chem. Ges. 1890, 23, 2469.
(6) (a) Hilbert, G. E.; Johnson, T. B. J. Am. Chem. Soc. 1929, 51, 1526.
(b) Szmant, H. H.; Levitt, G. J. Am. Chem. Soc. 1954, 76, 5459.
(c) Baleja, J. D. Synth. Commun. 1984, 14, 215. (d) Petrillo, G.;
Novi, M.; Garbarino, G.; Dell’Erba, C. Tetrahedron Lett. 1985, 26,
6365. (e) Petrillo, G.; Novi, M.; Garbarino, G.; Filiberti, M. Tetra-
hedron Lett. 1988, 29, 4185.
Selenium serves as an important structure motif in
many organic compounds. There has been a growing inter-
est in the synthesis of organoselenium because of its vari-
ous biological functions.16 Encouraged by the successful
synthesis of aryl sulfides, we attempted to apply the strate-
gy to carbon–selenium bond formation (Scheme 2).15b Un-
der the same conditions, the reaction of aniline and disele-
nide proceeded smoothly, affording the desired selenides in
yields of 86–93%.
The reaction might follow a radical pathway, so a radi-
cal-capturing experiment was conducted (Scheme 3, a).15c
The adduct 6 afforded by the experiment indicated the
presence of aryl radical 9. According to this observation and
previous literature reports,9,11 a suggested mechanism was
proposed as depicted in Scheme 3 (b). The aniline 1 under-
goes a nitrosation by tert-butyl nitrite to give the aryl dia-
zonium salt 7, which is protonated by ascorbic acid, and the
diazonium salt 8 is formed upon the change of anion. Then,
an electron transfers from ascorbate to aryl diazonium ion
to generate the aryl radical 9. The resulting ascorbyl radical
dismutates into dehydroascorbic acid and ascorbic acid
(Scheme 3, c),17 which can react with another diazonium
salt 7. Finally, the radical intermediate 9 reacts with disul-
fide 2 to generate the product 3.
(7) Wang, X.; Cuny, G. D.; Noël, T. Angew. Chem. Int. Ed. 2013, 52,
7860.
(8) (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (b) Carril, M.;
SanMartin, R.; Dominguez, E. Chem. Soc. Rev. 2008, 37, 639.
(c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,
248, 2337. (d) Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti,
B. Tetrahedron 2002, 58, 2041. (e) Kunz, K.; Scholz, U.; Ganzer,
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 1841–1846