ORGANIC
LETTERS
2009
Vol. 11, No. 15
3382-3385
Acyl-isothiocyanates as Efficient
Thiocyanate Transfer Reagents
Charuta C. Palsuledesai, Siva Murru, Santosh K. Sahoo, and Bhisma K. Patel*
Department of Chemistry, Indian Institution of Technology Guwahati,
Guwahati 781 039, India
Received June 2, 2009
ABSTRACT
An unprecedented transfer of a thiocyanate (-SCN) group from aroyl/acyl isothiocyanate to alkyl or benzylic bromide is observed in the
presence of a tertiary amine. This process is most effective when the bromomethyl proton is less acidic, while the presence of a more acidic
proton gives 1,3-oxathiol-2-ylidine and other related products.
In biological systems, coenzymes catalyze a variety of
reactions including transfer of various functional groups, for
example, thiamine pyrophosphate (TPP), coenzyme (CoASH),
biotin, and tetrahydrofolate (THF) transfer, two-carbon
fragments, acyl groups, carboxyl groups, and one-carbon
groups, respectively.1 Similarly, transfer of various functional
groups or a fragment of a molecule from one system to
another is well-known in the literature.2 However, transfer
of a thiocyanate group from one molecule to another has
not been observed so far. As a continuation of our efforts
and interest in developing methods for the synthesis of
heterocyclic compounds from thioureas and their analogues,3
we were prompted to study the reactivity of benzoyl
isothiocyanates toward R-bromoketones in the presence of
a tertiary amine, where thiocyanation of R-bromoketones was
observed. This observation is surprising since a nucleophilic
substitution product is formed in the absence of any
nucleophilic thiocyanate ion (Scheme 1).
Scheme 1. Formation of R-Thiocyanatoacetophenone 1a
When benzoyl isothiocyanate (1 equiv) was treated with
R-bromoacetophenone (1) (1 equiv) in the presence of
N-methylimidazole (1 equiv) in acetonitrile, both the reac-
tants got consumed giving a new product. Spectroscopic
analysis of the product revealed the structure to be R-thio-
cyanatoacetophenone (1a). However, no reaction was ob-
served in the absence of N-methylimidazole, suggesting the
definite involvement of a tertiary amine in this reaction
process.
(1) (a) David, L. N.; Cox, M. M. Lehninger Principle of Biochemistry,
3rd ed.; Macmillon, 1982. (b) Bruce, P. Y. Organic Chemistry, 3rd ed.;
Printice-Hall, Inc.; Pearson Education, 1995.
(2) (a) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809. (b)
Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.; Bonitatebus, P. J.; Millar,
S. J. J. Am. Chem. Soc. 1999, 121, 11638. (c) Arai, S.; Bellemin-Laponnaz,
S.; Fu, G. C. Angew. Chem., Int. Ed. 2001, 40, 234. (d) Denmark, S. E.;
Fu, J. J. Am. Chem. Soc. 2001, 123, 9488. (e) Shaw, S. A.; Aleman, P.;
Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368. (f) Vedejs, E.; Daugulis,
O.; Harper, L. A.; MacKay, J. A.; Powell, D. R. J. Org. Chem. 2003, 68,
5020. (g) Spivey, A. C.; Zhu, F.; Mitchell, M. B.; Davey, S. G.; Jarvest,
L. R. J. Org. Chem. 2003, 68, 7379. (h) Birman, V. B.; Uffman, E, W.;
Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226. (i)
Fu, G. C. Acc. Chem. Res. 2004, 37, 542. (j) Enders, D.; Balensiefer, B.
Acc. Chem. Res. 2004, 37, 534. (k) Birman, V. B.; Li, X.; Han, Z. Org.
Lett. 2007, 9, 37. (l) Sanchez-Rosello, M.; Puchlopek, A. L. A.; Morgan,
A. J.; Millar, S. J. J. Org. Chem. 2008, 73, 1774. (m) Wiberg, K. B.; Wang,
Y.-g.; Millar, S. J.; Puchlopek, A. L. A. J. Org. Chem. 2009, 74, 3659.
(3) (a) Singh, C. B.; Murru, S.; Kavala, V.; Patel, B. K. Org. Lett. 2006,
8, 5397. (b) Singh, C. B.; Murru, S.; Kavala, V.; Patel, B. K. J. Chem. Res.
2007, 136. (c) Murru, S.; Singh, C. B.; Kavala, V.; Patel, B. K. Tetrahedron
2008, 64, 1931. (d) Yella, R.; Ghosh, H.; Patel, B. K. Green Chem. 2008,
10, 1307. (e) Ghosh, H.; Yella, R.; Nath, J.; Patel, B. K. Eur. J. Org. Chem.
2008, 6189. (f) Ghosh, H.; Singh, C. B.; Murru, S.; Kavala, V.; Patel, B. K.
Tetrahedron Lett. 2008, 49, 2601.
10.1021/ol901561j CCC: $40.75
Published on Web 07/16/2009
2009 American Chemical Society