C O M M U N I C A T I O N S
concrete explanation for this observation. Indeed, preliminary
studies using mesitylene complex 1d as a catalyst show that there
is significant polymerization activity when the experiment is
conducted in bromobenzene whereas activity is negligible when
carried out in more coordinating toluene. Thus, while ethylene is
able to displace mesitylene, which has a barrier similar to that of
the coordinating anion [MeB(C6F5)3]-, it cannot compete with
toluene for the active site, and activity is nullified.
Acknowledgment. This work is dedicated to Prof. Hans H.
Brintzinger for his outstanding contributions to organometallic
chemistry. Financial support for this work came from the NSERC
of Canada in the form of a Discovery Grant and an E. W. R. Steacie
Fellowship to W.E.P. (2001-2003), and scholarship support to
P.G.H. (PGS-A and PGS-B). P.G.H. also thanks the Alberta
Heritage Foundation for a Steinhauer Award and the Sir Izaak
Walton Killam Foundation for a Fellowship.
Supporting Information Available: Experimental details, tables
of crystal data, atomic coordinates, bond lengths and angles, and
anisotropic parameters for 1a and 1c (PDF and CIF). This material is
References
Figure 2. Representative series of 1H NMR spectra (300 MHz, 270 K,
C6D5Br) for the arene exchange of 1d to 1c (left). Proposed mechanism of
exchange (right).
(1) (a) Guram, A. S.; Jordan, R. F. In ComprehensiVe Organometallic
Chemistry II; Lappert, M. F., Ed.; Elsevier Scientific Ltd: Oxford, 1995;
Vol. 4, p 589. (b) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem.
ReV. 2000, 100, 1253.
(2) (a) Beck, S.; Lieber, S.; Schaper, F.; Geyer, A.; Brintzinger, H.-H. J. Am.
Chem. Soc. 2001, 123, 1483. (b) Schaper, F.; Geyer, A.; Brintzinger, H.-
H. Organometallics 2002, 21, 473. (c) Chen, M.-C.; Marks, T. J. J. Am.
Chem. Soc. 2001, 123, 11803. (d) Lanza, G.; Fragala`, I. L.; Marks, T. J.
J. Am. Chem. Soc. 2000, 122, 12764. (e) Lanza, G.; Fragala`, I. L.; Marks,
T. J. J. Am. Chem. Soc. 1998, 120, 8257.
(3) Chan, M. S. W.; Vanka, K.; Pye, C. C.; Ziegler, T. Organometallics 1999,
18, 4624.
(4) Lanza, G.; Fragala`, I. L.; Marks, T. J. Organometallics 2002, 21, 5594.
(5) Landis, C. R, Rossaaen, K. A.; Sillars, D. R. J. Am. Chem. Soc. 2003,
125, 1710.
(6) (a) Lancaster, S. J.; Robinson, O. B.; Bochmann, M. Organometallics
1995, 14, 2456. (b) Gillis, D. J.; Quyoum, R.; Tudoret, M.-J.; Wang, Q.;
Jeremic, D.; Roszak, A. W.; Baird, M. C. Organometallics 1996, 15, 3600.
(7) Hayes, P. G.; Lee, L. W. M.; Knight, L. K.; Piers, W. E.; Parvez, M.;
Elsegood, M. R. J.; Clegg, W.; MacDonald, R. Organometallics 2001,
20, 2533.
(8) Hayes, P. G.; Piers, W. E.; McDonald, R. J. Am. Chem. Soc. 2002, 124,
2132.
(9) Chen, E. Y. X.; Marks, T. J. Chem. ReV. 2000, 100, 1391.
(10) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015.
(11) Chien, J. C. W.; Rausch, M. D.; Tsai, W.-M. J. Am. Chem. Soc. 1991,
113, 8570.
arene coordination is C6H5Br , C6H6 (1b) < C9H12 (1d) < C7H8,
showing that steric factors come into play on incorporation of more
than one methyl group in the arene.
At low temperatures, it is possible to quantitatively monitor the
displacement of mesitylene from 1d by toluene to give 1c under
pseudo-first-order conditions by 1H NMR spectroscopy (Figure 2).
The reaction was followed at various temperatures, and an Eyring
plot allowed for extraction of the activation parameters (∆Hq )
21.4(6) kcal mol-1 and ∆Sq ) 6(1) cal mol-1 K-1) which are quite
close to those found for ion pair reorganization processes in
metallocenium and constrained geometry cations partnered with the
[B(C6F5)4]- anion.17 Assessment of the rate using varying amounts
of toluene (still pseudo-first-order) at the same temperature (261
K) indicates there is no dependence on [toluene]; in fact, at very
high [toluene], the rate is slightly depressed, probably because the
dielectric constant of the medium has changed significantly under
these conditions. Although ∆Sq is not large enough to support a
fully dissociative mechanism, it is slightly positive; in combination
with the lack of [toluene] dependence, a mechanism involving
partial slippage of the outgoing η6 arene to a lower hapticity mode
before displacement by the more basic toluene (Figure 2) is
consistent with our results.
(12) Bouwkamp, M. W.; de Wolf, J.; del Hierro Morales, I.; Gercama, J.;
Meetsma, A.; Troyanov, S. I.; Hessen, B.; Teuben, J. H. J. Am. Chem.
Soc. 2002, 124, 12956 and references therein.
(13) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M.
Organometallics 1999, 18, 2947.
(14) While arene exchange in d0 metals is rare, several studies involving dn
metals exist, see for leading references: Traylor, T. G.; Stewart, K. J. J.
Am. Chem. Soc. 1986, 108, 6977.
Thermodynamic parameters for arene exchange in cationic d0
complexes of relevance to olefin polymerization have not been
reported to date; indeed, previous examples do not undergo arene
exchange readily.6 It has been previously noted that toluene has a
dampening effect on olefin polymerization activity in lower
coordinate, sterically open catalysts,18 and these results provide a
(15) See Supporting Information for details.
(16) Brouwer, D. M.; Mackor, E. L.; MacLean, C. In Carbonium Ions; Olah,
G. A.; Schleyer, P. v. R., Eds.; Wiley: New York, 1970; Vol. 2, p 837.
(17) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16,
842.
(18) Scollard, J. D.; McConville, D. H. J. Am. Chem. Soc. 1996, 118, 10008.
JA034680S
9
J. AM. CHEM. SOC. VOL. 125, NO. 19, 2003 5623