1132
R. N. Young et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1129–1132
group can be replaced by an acid equivalent such as a
tetrazole with comparable or enhanced activity. The
optimized compound (19a) displays a high degree of
selectivity and potency and in vivo half-life much super-
ior to PGE2. This compound and related analogues are
now being studied in a number of biological assays to
determine whether an EP4 selective agonist can serve as a
useful therapeutic for treatment of osteoporosis.
References and Notes
1. Coleman, R. A.; Smith, W. L.; Narumiya, S. Pharmacol.
Rev. 1994, 46, 205.
2. Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Physiol. Rev.
1999, 79, 1193.
3. Pilbeam, C. C.; Harrison, J. R.; Raisz, L. G. In Principles
of Bone Biology; Bilekizian, J. P., Raisz, J. P., Rodan, G. A.,
Eds, Academic: San Diego, 1996; p. 715.
Scheme 4. Reagents and conditions (a) (i) NaH, DMF, 50 ꢂC; (ii)
BrCH2(CH2)5CN, nBu4NI, 50 ꢂC, 84% (b) HF-Py, CH2Cl2, 87%; (c)
Dess–Martin periodinane, CH2Cl2, 88% (d) (i) NaH, DME, 0 ꢂC; (ii)
(MeO)2-P(O)CH2COCH2Ph, rt, 75%; (e) NaBH4, EtOH, ꢁ20 ꢂC; (f)
Bu3SnN3 neat 120 ꢂC, 3 h, 80%.
Finally the tetrazole moiety was introduced by reaction
of 18 with 3 equiv of nBu3SnN3 neat at 120 ꢂC for 3 h
(80% from enone). Reverse-phase HPLC allowed the
separation of both diasterioisomers eluting sequentially
in a ratio (19a/19b) (1:2) in the favor of the putative
15(R)-alcohol 19b.
4. (a) Rodan, G. A. J. Cell. Biochem. (Suppl. 15), 160. (b)
Ueno, K.; Haba, T.; Woodbury, D.; Price, P.; Anderson, R.;
Jee, W. S. S. Bone 1985, 6, 79. (c) Jee, W. S. S.; Ke, H. Z.; Li,
X. J. Bone Mineral 1991, 15, 33. (d) Norrdin, R. W.; Jee, W. S.
S.; High, W. B. Prostaglandins Leukot. Essent. Fatty Acids
1990, 41, 139.
5. Miyaura, C.; Inada, M.; Suzawa, T.; Sugimoto, Y.; Ush-
ikubi, F.; Ichikawa, A.; Narumiya, S.; Suda, T. J. Biol. Chem.
2000, 275, 19819.
Biological Results and Discussion
6. Machwate, M.; Harada, S.; Leu, T.; Seedor, G.; Labelle,
M.; Gallant, M.; Hutchins, S.; Lachance, N.; Sawyer, N.; Sli-
petz, D.; Metters, K. M.; Rodan, S. B.; Young, R.; Rodan,
G. A. Mol. Pharmacol. 2001, 60, 36.
7. Yoshida, K.; Oida, H.; Kobayashi, T.; Maruyama, T.;
Tanaka, M.; Katayama, T.; Yamaguchi, K.; Segi, E.; Tsu-
boyama, T.; Matsushita, M.; Ito, K.; Ito, Y.; Sugimoto, Y.;
Ushikubi, F.; Ohuchida, S.; Kondo, K.; Nakamura, T.; Nar-
umiya, S. Recently published reports of in vivo studies on an
analogue of PGE2 which has selective agonist activity at the
EP4 receptor have shown significant bone formation in rats
which further supports this hypothesis. See: Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 4580.
8. Abramovitz, M.; Adam, M.; Boie, Y.; Carriere, M.-C.;
Denis, D.; Godbout, C.; Lamontagne, S.; Rochette, C.; Saw-
yer, N.; Tremblay, N.; Belley, M.; Gallant, M.; Dufresne, C.;
Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M.; Ouimet, N.;
Metters, K. M. Biochem. Biophys. Acta 2000, 1483, 285.
9. Smith, R. L.; Lee, T.; Gould, N. P.; Cragoe, E. J., Jr.; Oien,
H. G.; Kuehl, F. A., Jr. J. Med. Chem. 1977, 20, 1292.
10. Maruyama, T.; Asada, M.; Shiraishi, T.; Yoshida, H.;
Maryama, T.; Ohuchida, S.; Nakai, H.; Kondo, K.; Toda, M.
Bioorg. Med. Chem. 2002, 10, 1743.
Receptor binding assays were performed using cell
membranes from HEK293ebna cells recombinantly
expressing the corresponding human prostanoid
cDNA’s.8 EP4 agonist potency and efficacy were eval-
uated utilizing a stable clone of pSV40-EP4 transfected
into HEK293 cells that expresses approximately 50
fmol/mg EP4 receptor. Whole cell cAMP assays were
performed essentially as described in Slipetz et al.14 with
the following modifications. Assays were performed
with cells in suspension in a total of 0.2 mL HBSS con-
taining 2 mM IBMX (phosphodiesterase type IV inhi-
bitor). IBMX and PGE2 or the test compound were
added to the incubation mixture in DMSO to a final
vehicle concentration of 1.8% (v/v) (kept constant in all
samples). The reaction was initiated by the addition of
1ꢃ105 cells per incubation, samples were incubated at
37 ꢂC for 10 min, and the reaction was terminated by
immersing the samples in boiling water for 3 min.
Measurement of cAMP was performed by a [125I]cAMP
scintillation proximity assay. For in vivo and in vitro
metabolism methods, see methods described by Nicoll-
Griffith et al.15
11. Hamberg, M.; Samuelsson, B. J. Biol. Chem. 1971, 246, 6713.
12. Hansen, H. S. Prostaglandins 1976, 12, 647.
13. Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron: Asym-
metry 1996, 7, 2113.
Analogues of PGE2 wherein the hydroxy cyclopenta-
none ring has been replaced by a lactam were found to
exhibit potent and selective agonism at the EP4 recep-
tor.16 Thus one can conclude that the C-11 hydroxy
group present in PGE2 is not necessary for either binding
or agonism at this receptor. Indeed, one could conclude
that lack of a corresponding hydroxy group in these
lactam analogues might be responsible for a measure of
the selectivity observed for the EP4 receptor over the
other prostaglandin receptors. The natural stereo-
chemistry at C-12 and putatively also at C-15 was found
to be important for activity at the receptor. The carboxyl
14. Slipetz, D.; Buchanan, S.; Mackereth, C.; Brewer, N.;
Pellow, V.; Hao, C.; Adam, M.; Abramovitz, M.; Metters,
K. M. Biochem. Pharmacol. 2001, 62, 997.
15. Nicoll-Griffith, D. A.; Falgueyret, J.-P.; Silva, J. M.;
Morin, P. E.; Trimble, L.; Chan, C.-C.; Clas, S.; Leger, S.;
Wang, Z.; Yergey, J. A.; Riendeau, D. Drug Metab. Disp.
1999, 27, 403.
16. Several patent applications on closely related structures
claimed as EP4 receptor agonists for treatment of osteoporosis
have recently been published. See: (a) Cameron, K. O.; Lefker,
B. A. WO 0242268 A2. (b) Cameron, K. O.; Ke, H.; Lefker, B.
A.; Thompson, D. D. WO 0146140 A1. (c) Maruyama, T.;
Kobayashi, K.; Maruyama, T. WO 0224647 A1.