J. Stursa et al. / Tetrahedron Letters 45 (2004) 2043–2046
2045
of 3-methoxyphenol with octanal19 or 3-cyclopentyl-
oxyphenol with 1,1-dimethoxyhexane.20 In both cases,
the reaction proceeded with remarkable regioselectivity
and the corresponding C4-symmetric resorc[4]arene tetra-
alkyl ether was isolated. Several monoalkyl ethers of
calix[4]arene, obtained either via selective dealkylation21
or partial alkylation,22 have also been reported. In
contrast, partiallyalkylated derivatives of resorc[4]arene
1 have not yet been described. Although selective
deprotection of octaisopropyl ether 6 gave a mixture of
at least six partiallyalkylated products, we were able to
separate five of them byflash chromatographyon silica
gel. The identification of a number and the position of
isopropyl groups employing NMR experiments forms a
part of our ongoing work in this area.
10. Selected analytical data for 2,4-diisopropoxybenzyl alco-
hol: 1H NMR (400 MHz, CDCl3) d 7.12 (d, 1H, Harom
J ¼ 8:0 Hz), 6.45 (s, 1H, Harom), 6.41 (d, 1H, Harom
,
,
J ¼ 8:0 Hz), 4.58 (s, 2H, CH2), 4.55–4.50 (m, 2H, CH,
J ¼ 6:1 Hz), 2.50 (s, 1H, OH), 1.35 (d, 6H, CH3,
J ¼ 6:1 Hz), 1.32 (d, 6H, CH3, J ¼ 6:1 Hz). 13C NMR
(100 MHz, CDCl3) d 158.6, 156.8, 129.5, 122.5, 106.0,
102.3, 70.1, 69.9, 61.9, 22.0, 21.9.
1
11. Selected analytical data for 6: mp 169–170 ꢁC. H NMR
(500 MHz, CDCl3) d 6.43 (s, 4H, H-4), 6.34 (s, 4H, H-1),
4.35 (sept, 8H, J ¼ 6:0 Hz, CH(CH3)2), 3.71 (s, 8H, CH2),
1.26 (d, 48 H, J ¼ 6:0 Hz, CH(CH3)2). 13C NMR
(125.8 MHz, CDCl3) d 154.28 (C-3), 131.41 (C-1), 123.65
(C-2), 103.00 (C-4), 71.24 (CH(CH3)2), 27.99 (CH2), 22.33
(CH(CH3)2). Anal. calcd for C52H72O8 (825.14): C, 75.69;
H, 8.80; Found: C, 75.36; H, 8.72.
12. Optimized procedure: 2,4-Diisopropoxybenzyl alcohol
(13.3 g, 59 mmol) was dissolved in CH3CN (29 mL) and
chlorotrimethylsilane (20 mL, 158 mmol) was added in one
portion. The mixture turned violet immediatelyand was
allowed to stand at room temperature for 1 h. Crystals of
resorc[4]arene 6 were filtered off, washed with CH3CN and
dried under vacuum (11.7 g, 96%).
In conclusion, we have established that cyclooligomer-
ization of 2,4-diisopropoxybenzyl alcohol in the pres-
ence of chlorotrimethylsilane followed by deprotection
represents a simple and effective route to the parent
resorc[4]arene which was isolated in 73% overall yield.
Furthermore, it is expected that partial deprotection of
resorc[4]arene octaisopropyl ether 6 could offer a wayin
which resorc[4]arene can be functionalized selectively.
Thus tailoring of different types of selectively function-
alized resorc[4]arenes enables the synthesis of new types
of receptors with enhanced selectivityand geometrical
stability. Our initial study shows its feasibility and
demonstrates this verypromising approach.
13. C52H72O8, MW 825.136, monoclinic system, space group
P121/n1,
a ¼ 15:0660ð2Þ,
b ¼ 22:6530ð4Þ,
c ¼
3
ꢀ
ꢀ
15:8310ð2Þ A, b ¼ 113:57ð4Þ, V ¼ 4952:2ð1Þ A , Z ¼ 4,
Dc ¼ 1:1067 g cmÀ3
,
lðMoKaÞ ¼ 0:729 cmÀ1
,
crystal
dimensions of 0.4 · 0.5 · 0.6 mm. Data were measured at
150 K on a KappaCCD diffractometer with graphite
ꢀ
monochromated MoKa radiation (k ¼ 0:710730 A). The
14
structure was solved bydirect methods
and anisotrop-
icallyrefined byfull matrix least-squares on F values15 to
final R ¼ 0:045, Rw ¼ 0:054 and S ¼ 1:112 with 568
parameters
using
7775
independent
reflections
(hrange ¼ 1:73–27:5). Hydrogen atoms were located from
the expected geometryand were not refined. Crystallo-
graphic data were deposited in CSD under CCDC
registration number 217280.
Acknowledgements
We thank Dr. Pavel Lhotak for valuable discussions and
Dr. David Sykora for MS measurements. This work was
carried out within the frame of a project of the Ministry
of Education, Youth and Sports of the Czech Republic
No. 223300006.
14. Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi,
A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl.
Crystallogr. 1994, 27, 435–435.
15. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout,
K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487–
1487.
16. Selected analytical data for 1: 1H NMR (500 MHz,
CD3OD) d 6.87 (s, 4H, H-1), 6.26 (s, 4H, H-4), 3.63 (s,
8H, CH2). 13C NMR (125.8 MHz, CD3OD) d 153.80 (C-
2), 132.69 (C-1), 121.85 (C-2), 104.02 (C-4), 29.99 (CH2).
HRMS (ESI) for C28H23O8 (M)1)À: Calcd 487.1390;
Found. 487.1755.
17. For a few recent examples see: Avram, L.; Cohen, Y. Org.
Lett. 2002, 4, 4365–4368; Atwood, J. L. J. Am. Chem. Soc.
2002, 124, 10646–10647; Avram, L.; Cohen, Y. J. Am.
Chem. Soc. 2002, 124, 15148–15149; Atwood, J. L.;
Barbour, L. J.; Jerga, A. Chem. Commun. 2001, 2376–
2377.
References and notes
1. Bayer, A. Ber. Dtsch. Chem. Ges. 1872, 5, 25–26.
2. Erdtman, J. B.; Hogberg, S. J. Tetrahedron Lett. 1968, 14,
1679–1682.
3. Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetra-
hedron 1996, 52, 2663–2704; Bohmer, V. Angew. Chem.
Int. Ed. Engl. 1995, 34, 713–745.
4. Falana, O. M.; Al-Farhan, E.; Keehn, P. M. Tetrahedron
Lett. 1994, 35, 65–68.
5. Konishi, H.; Nakamura, T.; Ohata, K.; Kobayashi, K.;
Morikawa, O. Tetrahedron Lett. 1996, 37, 7383–7386.
6. Konishi, H.; Sakakibara, H.; Kobayashi, K.; Morikawa,
O. J. Chem. Soc., Perkin Trans. 1 1999, 2583–2584.
7. Li, D.; Kusunoki, T.; Yamagishi, T. A.; Nakamoto, Y.
Polym. Bull. 2002, 47, 493–499; Li, D.; Suzuki, T.;
Konishi, G. I.; Yamagishi, T. A.; Nakamoto, Y. Polym.
Bull. 2002, 48, 423–429.
8. Botta, B.; Iacomacci, P.; Di Giovanni, C.; Monache, G.
D.; Gacs-Bitz, W.; Botta, M.; Tafi, A.; Corelli, F.; Misiti,
D. J. Org. Chem. 1992, 57, 3259–3261.
9. Koning, C. B.; Michael, J. P.; Otterlo, W. A. J. Chem.
Soc., Perkin Trans. 1 2000, 5, 799–811.
18. Selected analytical data for 7: 1H NMR (500 MHz,
CDCl3) d 6.99 (br s, 1H, OH), 6.70 (s, 1H, arom), 6.68
(s, 2H, arom), 6.51 (s, 1H, arom), 6.49 (s, 2H, arom), 6.46
(s, 1H, arom), 6.39 (s, 1H, arom), 4.62 (sept, 1H,
J ¼ 6:0 Hz, CH(CH3)2), 4.50–4.30 (m, 6H, J ¼ 6:0 Hz,
CH(CH3)2), 3.76 (s, 2H, CH2), 3.75 (s, 4H, 2 · CH2), 3.62
(s, 2H, CH2), 1.45 (d, 6 H, J ¼ 6:0 Hz, CH(CH3)2), 1.36–
1.30 (3 · d, 18H, J ¼ 6:0 Hz, 3 · CH(CH3)2), 1.29–1.20
(3 · d, 18H, J ¼ 6:0 Hz, 3 · CH(CH3)2). 13C NMR
(125.8 MHz, CDCl3) d 155.15, 154.56, 154.54, 154.46,
154.01, 153.90, 152.51, 151.53 (C-3 and C-5), 132.74,
131.59, 131.21, 131.11, 129.44 (C-1), 125.39, 124.37,
123.81, 123.73, 122.87, 122.50, 122.00, 118.90 (C-2 and