4970
R. Williams et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4967–4970
14. Compound 2 (VU0155041) is now available from TOCRIS bioscience (Cat. No.
3248).
compared to the original hit. However, the cyclohexene ring sys-
tem with the primary carboxamide showed specificity for one
enantiomer ((+)-isomer) allowing for the identification of a com-
pound with activity similar to the original lead (506 nM vs
740 nM). The limited SAR in scaffolds that have been identified
as allosteric modulators is a well-documented phenomenon in this
area.11–13,16,23 Even though the SAR was limited around this scaf-
fold, compound 2 has been shown to be efficacious in preclinical
PD models further validating mGluR4 as a potential therapeutic
treatment for alleviating PD symptoms.
15. Assay details: Cell culture-human mGluR4/Gqi5/CHO line. Human mGluR4
(hmGluR4)/CHO cells stably transfected expressing the chimeric G protein
Gqi5 in pIRESneo3 (Invitrogen, C., CA) were cultured in 90% Dulbecco’s
Modified Eagle Media (DMEM), 10% dialyzed fetal bovine serum (FBS),
100 units/ml penicillin/streptomycin, 20 mM HEPES (pH 7.3), 1 mM sodium
pyruvate, 2 mM glutamine, 400
VA) and 5 nM methotrexate (Calbiochem, EMD Chemicals, Gibbstown, NJ).;
(30,000 cells/20 l/well) were plated in black-walled, clear-bottomed, TC
lg/ml G418 sufate (Mediatech, Inc., Herndon,
l
treated, 384 well plates (Greiner Bio-One, Monroe, North Carolina) in DMEM
containing 10% dialyzed FBS, 20 mM HEPES, 100 units/ml penicillin/
streptomycin, and 1 mM sodium pyruvate (Plating Medium). The cells were
grown overnight at 37 °C in the presence of 5% CO2. During the day of assay, the
medium was replaced with 20 lL of 1 lM Fluo-4, AM (Invitrogen, Carlsbad, CA)
Acknowledgments
prepared as a 2.3 mM stock in DMSO and mixed in a 1:1 ratio with 10% (w/v)
pluronic acid F-127 and diluted in Assay Buffer (Hank’s balanced salt solution,
20 mM HEPES and 2.5 mM Probenecid (Sigma–Aldrich, St. Louis, MO)) for
The authors thank Qingwei Luo and Rocio Zamorano for techni-
cal assistance with pharmacology assays and Emily L. Days, Tasha
Nalywajko, Cheryl A. Austin and Michael Baxter Williams for their
critical contributions to the HTS portion of the project and Matt
Mulder, Chris Denicola and Sichen Chang for the purification of
compounds utilizing the mass-directed HPLC system. This work
was supported by the National Institute of Mental Health, the Mi-
chael J. Fox Foundation, the Vanderbilt Department of Pharmacol-
ogy and the Vanderbilt Institute of Chemical Biology.
45 min at 37 °C. Dye was removed and replaced with 20 lL of Assay Buffer.
Test compounds were transferred to daughter plates using an Echo acoustic
plate reformatter (Labcyte, Sunnyvale, CA) and then diluted into Assay Buffer.
Ca2+ flux was measured using the Functional Drug Screening System 6000
(FDSS6000, Hamamatsu, Japan). Baseline readings were taken (10 images at
1 Hz, excitation, 470 20 nm, emission, 540 30 nm) and then 20 ll/well test
compounds were added using the FDSS’s integrated pipettor. Cells were
incubated with compounds for approximately 2.5 min and then an EC20
concentration of glutamate was applied; 2 min later an EC80 concentration of
glutamate was added. For concentration–response curve experiments,
compounds were serially diluted 1:3 into 10 point concentration–response
curves and were transferred to daughter plates using the Echo. Test
compounds were again applied and followed by EC20 concentrations of
glutamate. For fold shift experiments, compounds were added at 2ꢂ their final
concentration and then increasing concentrations of glutamate were added in
the presence of vehicle or the appropriate concentration of test compound.
Curves were fitted using a four point logistical equation using Microsoft XLfit
(IDBS, Bridgewater, NJ).
References and notes
1. Conn, P. J.; Christopoulos, A.; Lindsley, C. W. Nat. Rev. Drug Disc. 2009, 8, 41.
2. Conn, P. J.; Jones, C. K.; Lindsley, C. W. Trends Pharm. Sci. 2009, 30, 148.
3. Marino, M. J.; Williams, D. L., Jr.; O’Brien, J. A.; Valenti, O.; McDonald, T. P.;
Clements, M. K.; Wang, R.; DiLella, A. G.; Kinney, G. G.; Conn, P. J. Proc. Natl.
Acad. Sci. 2003, 100, 13668.
4. Niswender, C. M.; Johnson, K. A.; Weaver, C. D.; Jones, C. K.; Xiang, Z.; Luo, Q.;
Rodriguez, A. L.; Marlo, J. E.; de Paulis, T.; Thompson, A. D.; Days, E. L.;
Nalywajko, T.; Austin, C. A.; Williams, M. B.; Ayala, J. E.; Williams, R.; Lindsley,
C. W.; Conn, P. J. Mol. Pharmacol. 2008, 74, 1345.
5. Battaglia, G.; Busceti, C. L.; Molinaro, G.; Giagioni, F.; Traficante, A.; Nicoletti, F.;
Bruno, V. J. Neurosci. 2006, 26, 7222.
6. Lopez, S.; Turle-Lorenzo, N.; Acher, F.; De Leonibus, E.; Mele, A.; Amalric, M. J.
Neurosci. 2007, 27, 6701.
7. Sibille, P.; Lopez, S.; Brabet, I.; Valenti, O.; Oueslati, N.; Gaven, F.; Goudet, C.;
Bertrand, H.-O.; Neyton, J.; Marino, M. J.; Amalrie, M.; Pin, J.-P.; Acher, F. C. J.
Med. Chem. 2007, 50, 3585.
8. Annoura, H.; Fukunaga, A.; Uesugi, M. Bioorg. Med. Chem. Lett. 1996, 6, 763.
9. Maj, M.; Bruno, V.; Dragic, Z.; Yamamoto, R.; Battaglia, G.; Inderbitzin, W.;
Stoehr, N.; Stein, T.; Gasparini, F.; Vranesic, I.; Kuhn, R.; Nicoletti, F.; Flor, P. J.
Neuropharmacology 2003, 45, 895.
10. Hopkins, C. R.; Lindsley, C. W.; Niswender, C. M. Future Med. Chem. 2009, 1, 501.
11. Niswender, C. M.; Lebois, E. P.; Luo, Q.; Kim, K.; Muchalski, H.; Yin, H.; Conn, P.
J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18, 5626.
12. Williams, R.; Niswender, C. M.; Luo, Q.; Le, U.; Conn, P. J.; Lindsley, C. W. Bioorg.
Med. Chem. Lett. 2009, 19, 962.
16. Zhao, Z.; Wisnoski, D. D.; O’Brien, J. A.; Lemaire, W.; Williams, D. L., Jr.;
Jacobsen, M. A.; Wittman, M.; Ha, S. N.; Schaffhauser, H.; Sur, C.; Pettibone, D.
J.; Duggan, M. E.; Conn, P. J.; Hartmann, G. D.; Lindsley, C. W. Bioorg. Med. Chem.
Lett. 2007, 17, 1386.
17. Leister, W.; Strauss, K.; Wisnoski, D.; Zhao, Z.; Lindsley, C. J. Comb. Chem. 2003,
5, 322.
18. All new structures were characterized by LC–MS and/or 1H NMR and found to
be in agreement with their structures.
19. Kimura, T.; Hamada, Y.; Stochaj, M.; Ikari, H.; Nagamine, A.; Abdel-Rahman, H.;
Igawa, N.; Hidaka, K.; Nguyen, J.-T.; Saito, K.; Hayashi, Y.; Kiso, Y. Bioorg. Med.
Chem. Lett. 2006, 16, 2380.
20. Kohara, Y.; Imamiya, E.; Kubo, K.; Wada, T.; Inada, Y.; Naka, T. Bioorg. Med.
Chem. Lett. 1995, 5, 1903.
21. Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. J. Med. Chem.
1996, 39, 5228–5235.
22. HPLC conditions: AD chirapak column, 250 ꢂ 150 mmID, 20 mM particle size;
solvent, 6% isopropanol/hexanes, 120 mL/min; 220 nM. RT = 12.7 min, (+)-
isomer, [
MeOH).
a
]
D
+52.9 (c 1, MeOH); RT = 13.8 min, (ꢀ)-isomer, [
a
]
D
ꢀ47.1 (c 1,
23. O’Brien, J. A.; Lemaire, W.; Wittmann, M.; Jacobsen, M. A.; Ha, S. N.;
Wisnoski, D. D.; Lindsley, C. W.; Schaffhauser, H. J.; Rowe, B.; Sur, C.;
Duggan, M. E.; Pettibone, D. J.; Conn, P. J.; Williams, D. L., Jr. J. Pharm. Expt.
Ther. 2004, 309, 568.
13. Engers, D. W.; Niswender, C. M.; Weaver, C. D.; Jadhav, S.; Menon, U. N.;
Zamorano, R.; Conn, P. J.; Lindsley, C. W.; Hopkins, C. R. J. Med. Chem. 2009.