10.1002/anie.201903511
Angewandte Chemie International Edition
COMMUNICATION
S. Zhang, G. Li, X. G. Zhang, X. H. Zhang, Pd(II)-catalyzed selective
sulfenylation of arene C–H bonds using N-arylthiobenzamides as
thiolation reagent and oxidant. Tetrahedron 2015, 71, 5458-5464; (g) T.
Muller, L. Ackermann, Nickel-Catalyzed C–H Chalcogenation of Anilines.
Chem.Eur.J. 2016, 22, 14151-14154; (h) P. Peng, J. Wang, C. Li, W. Zhu,
H. Jiang, H. Liu, Cu(II)-catalyzed C6-selective C–H thiolation of 2-
pyridones using air as the oxidant. RSC Adv. 2016, 6, 57441-57445; (i)
S. Yang, B. Feng, Y. Yang, Rh(III)-Catalyzed Direct ortho-
Chalcogenation of Phenols and Anilines. J. Org. Chem. 2017, 82, 12430-
12438; (j) M. Chaitanya, P. Anbarasan, Lewis Acid/Bronsted Acid
Controlled Pd(II)-Catalyzed Chemodivergent Functionalization of
C(sp2)–H Bonds with N-(Arylthio)i(a)mides. Org. Lett. 2018, 20, 3362-
3366; (k) W. Xu, Y.-Y. Hei, J. L. Song, X. C. Zhan, X. G. Zhang and C. L.
Deng, Copper(I)-Catalyzed Thiolation of C–H Bonds for the Synthesis of
Sulfenyl Pyrroles and Indoles. Synthesis 2018, 50, A-G.
Experimental Section
To a 25 mL Schlenk-type sealed tube equipped with a magnetic stirring
bar was added the substrate (0.1 mmol), [RhCp*Cl2]2 (3.1 mg, 0.005 mmol),
disulfides (0.1 mmol), Ag2O (34.8 mg, 0.15 mmol), Boc-leucine (4.6 mg,
20 mol %) and dry DCM (2.0 mL) under N2 atmosphere. The tube was
capped and heated to 90 °C for 12 h. After cooled to room temperature,
the reaction mixture was filtered through a pad of Celite. The filtrate was
concentrated in vacuo to afford crude product, which was purified by flash
column chromatography on silica gel to give the pure product.
Acknowledgements
[7]
L. D. Tran, I. Popov, O. Daugulis, Copper-Promoted Sulfenylation of sp2
C–H Bonds. J. Am. Chem. Soc. 2012, 134, 18237-18240. For more
reports using 8-aminoquinoline auxiliaries as bidentate directing groups,
see: (b) X. B. Yan, P. Gao, H. B. Yang, Y. X. Li, X. Y. Liu, Y. M. Liang,
Copper(II)-catalyzed direct thiolation of C–H bonds in aromatic amides
with aryl and aliphatic thiols. Tetrahedron 2014, 70, 8730-8736; (c) C. Lin,
D. Li, B. Wang, J. Yao, Y. Zhang, Direct ortho-Thiolation of Arenes and
Alkenes by Nickel Catalysis. Org. Lett. 2015, 17, 1328-1331; (d) V. P.
Reddy, R. Qiu, T. Iwasaki, N. Kambe, Nickel-catalyzed synthesis of
diarylsulfides and sulfones via C–H bond functionalization of arylamides.
Org. Biomol. Chem. 2015, 13, 6803-6813; (e) Y. Liu, M. Huang, L. Wei,
Selective Mono- and Di-C(aryl)-H Sulfenylation of Benzamides by One-
Pot Assembly of 8-Aminoquinoline, Benzoyl chlorides, and Thiophenols.
Asian J. Org. Chem. 2017, 6, 41-43; (f) C. Lin, D. Y. Li, B. J. Wang, J. Z.
Yao, Z. X. Liu, Y. H. Zhang, Direct ortho-Thiolation of Arenes and
Alkenes by Nickel Catalysis. Org. Lett. 2015, 17, 1328-1331; (g) X. Wang,
R. Qiu, C. Yan, V. P. Reddy, L. Zhu, X. Xu, S. F. Yin, Nickel-Catalyzed
Direct Thiolation of C(sp3)–H Bonds in Aliphatic Amides. Org. Lett. 2015,
17, 1970-1973; (h) S. Y. Yan, Y. J. Liu, B. Liu, Y. H. Liu, Z. Z. Zhang, B.
F. Shi, Nickel-catalyzed direct thiolation of unactivated C(sp3)–H bonds
with disulfides. Chem. Commun. 2015, 51, 7341-7344; (i) X. Ye, J. L.
Petersen, X. Shi, Nickel-catalyzed directed sulfenylation of sp2 and sp3
C–H bonds. Chem. Commun. 2015, 51, 7863-7866; (j) Q. Zhao, T.
Poisson, X. Pannecoucke, J. P. Bouillon, T. Besset, Pd-Catalyzed
We gratefully acknowledge the National Natural Science
Foundation of China (grant no. 21671097 and 21331002) and the
Fundamental Research Funds for the Central Universities for
financial support.
Keywords: weakly coordinating directing group • thilolation •
disulfide • amino acid • rhodium
[1]
[2]
C. F. Lee, Y. C. Liu, S. S. Badsara, Transition-Metal-Catalyzed C–S Bond
Coupling Reaction. Chem. Asian J. 2014, 9, 706-722.
(a) G. Evano, C. Theunissen, A. Pradal, Impact of copper-catalyzed
cross-coupling reactions in natural product synthesis: the emergence of
new retrosynthetic paradigms. Nat. Prod. Rep. 2013, 30, 1467-1489; (b)
N. Naowaroina, R. Cheng, L. Chen, M. Quill, M. Xu, C. Zhao, P. Liu, Mini-
Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented
Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry
2018, 57, 3309-3325.
[3]
[4]
C. E. Hoyle, A. B. Lowe, C. N. Bowman, Thiol-click chemistry: a
multifaceted toolbox for small molecule and polymer synthesis. Chem.
Soc. Rev. 2010, 39, 1355-1387.
(a) L. Linford, H. G. Raubenheimer, Formation and Reactions of
Organosulfur and Organoselenium Organometallic Compounds. Adv.
Organomet. Chem. 1991, 32, 1-119; (b) K. M. KoczajaDailey, S. F. Luo,
T. B. Rauchfuss, in Transition Metal Sulfur Chemistry: Biological and
Industrial Significance, Vol. 653 (Eds.: E. I. Stiefel, K. Matsumoto), 1996,
pp. 176-186; (c) E. Hauptman, P. J. Fagan, W. Marshall, Synthesis of
Novel (P,S) Ligands Based on Chiral Nonracemic Episulfides. Use in
Asymmetric Hydrogenation. Organometallics 1999, 18, 2061-2073; (d) R.
J. Angelici, Thiophenes in Organotransition Metal Chemistry: Patterns of
Reactivity. Organometallics 2001, 20, 1259-1275; (e) S. V. Makarov,
Novel trends in chemistry of sulfur-containing reductants. Uspekhi Khimii
2001, 70, 996-1007; (f) T. Murai, The Construction and Application of
C=S Bonds. Top. Curr. Chem. 2018, 376:31.
Diastereoselective
Trifluoromethylthiolation
of
Functionalized
Acrylamides. Org. Lett. 2017, 19, 5106-5109; (k). B. Khan, H. S. Dutta
and D. Koley, Remote C–H Functionalization of 8-Aminoquinolinamides.
Asian J. Org. Chem. 2018, 7, 1270-1297; (l) L. Hu, X. Chen, L. Yu, Y. Q.
Yu, Z. Tan, G. G. Zhu and Q. W. Gui, Highly mono-selective ortho-
methylthiolation of benzamides via cobalt-catalyzed sp2 C–H activation.
Org. Chem. Front. 2018, 5, 216-221.
[8]
(a) R. Qiu, V. P. Reddy, T. Iwasaki, N. Kambe, The Palladium-Catalyzed
Intermolecular C–H Chalcogenation of Arenes. J. Org. Chem. 2015, 80,
367-374; (b) T. Gensch, F. J. Klauck, F. Glorius, Cobalt-Catalyzed C–H
Thiolation through Dehydrogenative Cross-Coupling. Angew. Chem. Int.
Ed. 2016, 55, 11287-11291; Angew. Chem. 2016, 128, 11457-11461; (c)
W. Xie, B. Li, B. Wang, Rh(III)-Catalyzed C7-Thiolation and Selenation
of Indolines. J. Org. Chem. 2016, 81, 396-403; (d) P. Gandeepan, J.
Koeller and L. Ackermann, Expedient C–H Chalcogenation of Indolines
and Indoles by Positional-Selective Copper Catalysis. ACS Catal. 2017,
7, 1030-1034.
[5]
[6]
Toshihiko Migita, Tomiya Shimizu, Yoriyoshi Asami, Jun-ichi Shiobara,
Yasuki Kato, and Masanori Kosugi, The Palladium Catalyzed
Nucleophilic Substitution of Aryl Halides by Thiolate Anions. Bull. Chem.
Soc. Jpn. 1980, 53, 1385-1389.
(a) X. Chen, X. S. Hao, C. E. Goodhue, J. Q. Yu, Cu(II)-catalyzed
functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem.
Soc. 2006, 128, 6790-6791. For more reports using pyridine as directing
groups, see: (b) X. Zhao, E. Dimitrijevic, V. M. Dong, Palladium-catalyzed
C–H bond functionalization with arylsulfonyl chlorides. J. Am. Chem. Soc.
2009, 131, 3466-3467; (c) L. Chu, X. Yue, F. L. Qing, Cu(II)-mediated
methylthiolation of aryl C–H bonds with DMSO. Org. Lett. 2010, 12, 1644-
1647; (d) M. Iwasaki, M. Iyanaga, Y. Tsuchiya, Y. Nishimura, W. Li, Z. Li,
Y. Nishihara, Palladium-catalyzed direct thiolation of aryl C–H bonds with
disulfides. Chem.Eur.J. 2014, 20, 2459-2462; (e) Y. Yang, W. Hou, L.
Qin, J. Du, H. Feng, B. Zhou, Y. Li, Rhodium-catalyzed directed
sulfenylation of arene C–H bonds. Chem.Eur.J. 2014, 20, 416-420; (f) X.
[9]
(a) M. Iwasaki, W. Kaneshika, Y. Tsuchiya, K. Nakajima, Y. Nishihara,
Palladium-Catalyzed peri-Selective Chalcogenation of Naphthylamines
with Diaryl Disulfides and Diselenides via C–H Bond Cleavage. J. Org.
Chem. 2014, 79, 11330-11338; (b) S. Y. Yan, Y. J. Liu, B. Liu, Y. H. Liu,
B. F. Shi, Nickel-catalyzed thiolation of unactivated aryl C–H bonds:
efficient access to diverse aryl sulfides. Chem. Commun. 2015, 51, 4069-
4072; (c) K. Yang, Y. Wang, X. Chen, A. A. Kadi, H. K. Fun, H. Sun, Y.
Zhang, H. Lu, Nickel-catalyzed and benzoic acid-promoted direct
sulfenylation of unactivated arenes. Chem. Commun. 2015, 51, 3582-
3585; (d) S. L. Liu, X. H. Li, T. H. Shi, G. C. Yang, H. L. Wang, J. F. Gong,
This article is protected by copyright. All rights reserved.