5490
J. Bravo et al. / Journal of Organometallic Chemistry 692 (2007) 5481–5491
1
of the Hꢀ ligand is confirmed by the H NMR spectra,
which show a sharp singlet at ꢀ7.63 ppm. T1 measurements
on this signal gave a T1(min) value of 467 ms (at 400 MHz),
(b) K. Abdur-Rashid, R. Abbel, A. Hadrovic, A.J. Lough, R.H.
Morris, Inorg. Chem. 44 (2005) 2483–2492.
[6] (a) G.J. Kubas, Metal Dihydrogen and r-Bond Complexes, Kluwer
Academic, Plenum Publishers, New York, 2001;
(b) D.M. Heinekey, W.J. Oldham Jr., Chem. Rev. 93 (1993) 913–
926;
1
fitting the classical nature of dihydride complex 7. The H
NMR spectra of 7 also show a sharp triplet at 3.53 ppm
(Jvt = 7 Hz), due to the methoxy resonance of the two
PPh2OMe phosphite ligands in a mutually trans position.
In the temperature range between +20 and ꢀ80 ꢁC, the
31P{1H} NMR spectra appear as a sharp singlet, confirm-
ing the magnetic equivalence of the two phosphite ligands.
On the basis of these data, an all-trans geometry VIII, like
that of chloro-precursors 6, may be proposed for dihydride
complex 7.
(c) R.H. Crabtree, Angew. Chem., Int. Ed. Engl. 32 (1993) 789–
805;
(d) P.G. Jessop, R.H. Morris, Coord. Chem. Rev. 121 (1992) 155–
284.
[7] (a) N. Mathew, B.R. Jagirdar, R.S. Gopalan, G.U. Kulkarni,
Organometallics 19 (2000) 4506–4517;
(b) N. Mathew, B.R. Jagirdar, A. Ranganathan, Inorg. Chem. 42
(2003) 187–197, and references therein.
´
´
[8] (a) S. Garcıa-Fontan, A. Marchi, L. Marvelli, R. Rossi, S. Antoniutti,
G. Albertin, J. Chem. Soc., Dalton Trans. (1996) 2779–2785;
(b) G. Albertin, S. Antoniutti, M. Bettiol, E. Bordignon, F. Busatto,
Organometallics 16 (1997) 4959–4969;
4. Conclusions
(c) G. Albertin, S. Antoniutti, S. Garc´ıa-Fonta´n, R. Carballo, F.
Padoan, J. Chem. Soc., Dalton Trans. (1998) 2071–2081;
(d) G. Albertin, S. Antoniutti, E. Bordignon, D. Bresolin, J.
Organomet. Chem. 609 (2000) 10–20;
This report describes new routes for preparing dihydride
complexes of ruthenium with bidentate phosphite ligands,
giving rise to unprecedented dihydrides RuH2(PFFP)2,
RuH2(POOP)2 and RuH2(CO)(PHPh2)(POOP). An unex-
pected example of metal-mediated fragmentation of the
bidentate phosphite POOP, yielding the secondary phos-
phine PHPh2, is observed. The spectroscopic data and
structural parameters of both dichloro- and dihydride com-
plexes are also reported.
´
´
(e) S. Bolano, J. Bravo, S. Garcıa-Fontan, J. Castro, J. Organomet.
˜
Chem. 667 (2003) 103–111;
´
´
(f) S. Bolano, J. Bravo, S. Garcıa-Fontan, Eur. J. Inorg. Chem.
˜
(2004) 4812–4819;
´
´
´
(g) S. Bolano, J. Bravo, J. Castro, S. Garcıa-Fontan, M.C. Marın, P.
˜
´
Rodrıguez-Seoane, J. Organomet. Chem. 690 (2005) 4945–4958;
´
(h) G. Albertin, S. Antoniutti, C. Busato, J. Castro, S. Garcıa-
´
Fontan, Dalton Trans. (2005) 2641–2649;
´
´
(i) G. Albertin, S. Antoniutti, J. Bravo, J. Castro, S. Garcıa-Fontan,
´
`
M.C. Marın, M. Noe, Eur. J. Inorg. Chem. (2006) 3451–3462;
5. Supplementary material
´
´
´
´
(j) J. Bravo, J. Castro, S. Garcıa-Fontan, M.C. Rodrıguez-Martınez,
P. Rodr´ıguez-Seoane, Eur. J. Inorg. Chem. (2006) 3028–3040.
[9] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemi-
cals, 3rd ed., Butterworthand Heinemann, Oxford, 1988.
CCDC 652770, 639443, 639141 and 639142 contains the
supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
´
´
[10] S. Bolano, J. Bravo, S. Garcıa-Fontan, Inorg. Chim. Acta 315 (2001)
˜
81–87.
[11] V.S. Reddy, K.V. Katti, Inorg. Synth. 32 (1998) 133–137.
[12] P.H.M. Budzelaar, GNMR version 4.1, Cherwell Scientific Limited,
Oxford Science Park, Oxford OX4 4GA, United Kingdom, 1995.
References
[14] (a) F.P. Dwyer, H.A. Goodwin, E.C. Gyarfas, Aust. J. Chem. 62
(1963) 42–50;
[1] (a) M.A. Bennett, M.I. Bruce, T.W. Matheson, in: G. Wilkinson,
F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic
Chemistry, Pergamon Press, New York, 1982;
(b) R.A. Krause, Inorg. Chim. Acta 22 (1972) 209–213;
(c) B.P. Sullivan, D.J. Salmon, T.J. Meyer, Inorg. Chem. 17 (1978)
3334–3341.
(b) M.A. Bennett, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.),
Comprehensive Organometallic Chemistry II, Elsevier, Oxford, UK,
1995;
[15] P.S. Hallman, T.A. Stephenson, G. Wilkinson, Inorg. Synth. 12
(1970) 237–240.
[16] T.A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 28 (1966) 945–
956.
(c) M. Peruzzini, R. Poli, Recent Advances in Hydride Chemistry,
Elsevier, Amsterdam, NL, 2001.
[17] G.M. Sheldrick, SADABS, An Empirical Absorption Correction Pro-
gram for Area Detector Data, University of Go¨ttingen, Germany,
1996.
[18] P. McArdle, J. Appl. Cryst. 28 (1995) 65.
[19] G.M. Sheldrick, SHELX-97, Program for the Solution and Refinement
of Crystal Structures, University of Go¨ttingen, Germany, 1997.
[20] A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) C34.
[21] International Tables for X-ray Crystallography, vol. C, Kluwer,
Dordrecht, 1992.
[2] (a)E.L. Muetterties (Ed.), Transition Metal Hydrides, Marcel Dek-
ker, New York, 1971;
(b) A. Dedieu, Transition Metal Hydrides, Wiley-VCH, New York,
1992.
[3] (a) S. Sabo-Etienne, B. Chaudret, Chem. Rev. 98 (1998) 2077–2091;
(b) M.A. Esteruelas, L.A. Oro, Chem. Rev. 98 (1998) 577–588.
[4] (a) G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 92 (1992)
1051–1069;
(b) W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029–3070;
(c) S.E. Clapham, A. Hadzovic, R.H. Morris, Coord. Chem. Rev.
248 (2004) 2201–2237;
[22] T.E. Wilhelm, T.R. Belderrain, S.N. Brown, R.H. Grubbs, Organo-
metallics 16 (1997) 3867–3869.
´
[23] G. Albertin, S. Antoniutti, M. Bortoluzzi, J. Castro-Fojo, S. Garcıa-
(d) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 30 (1997) 97–102;
(e) G. Ma, R. McDonald, M. Ferguson, R.G. Cavell, B.O. Patrick,
B.R. James, T.Q. Hu, Organometallics 26 (2007) 846–854, and
references therein.
´
Fontan, Inorg. Chem. 43 (2004) 4511–4522;
G. Albertin, S. Antoniutti, A. Bacchi, C. D’Este, G. Pelizzi, Inorg.
Chem. 43 (2004) 1336–1349;
G. Albertin, S. Antoniutti, A. Bacchi, F. De Marchi, G. Pelizzi,
Inorg. Chem. 44 (2005) 8947–8954;
[5] (a) R. Noyori, M. Koizumi, D. Ishii, T. Ohkuma, Pure Appl. Chem.
73 (2001) 227–232;