Journal of the American Chemical Society
Communication
Reich, H. J.; Menahan, L. A.; Peterson, R. E. Synthesis of 14C-Labeled
Perfluorooctanoic and Perfluorodecanoic Acids; Purification of
Perfluorodecanoic Acid. J. Labelled Compd. Radiopharm. 1987, 24,
1235. (f) Barton, D. H. R.; Jaszberenyi, J. C.; Theodorakis, E. A.
Radical Nitrile Transfer with Methanesulfonyl Cyanide or p-
Toluenesulfonyl Cyanide to Carbon Radicals Generated From the
Acyl Derivatives of N-Hydroxy-2-thiopyridone. Tetrahedron Lett.
1991, 32, 3321. (g) Mantegani, S.; Brambilla, E.; Ermoli, A.;
Fontana, E.; Angiuli, P.; Vicario, G. P. Syntheses of Tritium and
Carbon-14 Labelled N-(3-Dimethyl Aminopropyl)-N-(Ethylamino-
carbonyl)-6-(2-Propenyl)ergoline-8β-Carboxamide (Cabergoline), A
Potent Long Lasting Prolactin Lowering Agent. J. Labelled Compd.
Radiopharm. 1991, 29, 519. (h) Kurosawa, M.; Kanamaru, H.;
Nishioka, K. 14C-Labeling of a Novel Prostacyclin I1 Derivative, SM-
10902. J. Labelled Compd. Radiopharm. 1997, 39, 129. (i) Berthelette,
C.; Wang, Z. Practical [14C]-Synthesis of Molecules Containing an
Acetic Acid Moiety: Application to [14C]-Labeled DP1 Antagonists. J.
Labelled Compd. Radiopharm. 2007, 50, 1. (j) Ren, S.; McNamara, P.;
Koharski, D. An Improved Synthesis of [24-14C]Cholic Acid, and its
Application to the Synthesis of [14C]SCH 209702 (Syn3). Synthesis
of [2H8]SCH 209702. J. Labelled Compd. Radiopharm. 2008, 51, 231.
(k) Loreau, O.; Georgin, D.; Taran, F.; Audisio, D. Palladium-
Catalyzed Decarboxylative Cyanation of Aromatic Carboxylic Acids
using [13C] and [14C]-KCN. J. Labelled Compd. Radiopharm. 2015,
58, 425. For recent examples of direct decarboxylative cyanation, see:
(l) Song, F.; Salter, R.; Chen, L. Development of Decarboxylative
Cyanation Reactions for C-13/C-14 Carboxylic Acid Labeling Using
an Electrophilic Cyanating Reagent. J. Org. Chem. 2017, 82, 3530.
(m) Le Vaillant, F.; Wodrich, M. D.; Waser, J. Room Temperature
Decarboxylative Cyanation of Carboxylic Acids Using Photoredox
Catalysis and Cyanobenziodoxolones: A Divergent Mechanism
Compared to Alkynylation. Chem. Sci. 2017, 8, 1790. For a method
relying on a Curtius rearrangement/Sandmeyer reaction synthetic
strategy, see: (n) Zhang, A. S.; Ho, J. Z.; Braun, M. P. An Efficient
Synthesis of Carbon-14-Labeled 6-[2-(Dimethylamino)ethyl]-14-(1-
ethylpropyl)-5,6,7,8-tetrahydroindolo [2,1-a] [2,5]Benzodiazocine-
11-carboxylic Acid using Curtius Rearrangement Reaction as a Key
Step. J. Labelled Compd. Radiopharm. 2011, 54, 163. For a review,
see: (o) Derdau, V. New Trends and Applications in Cyanation
Isotope Chemistry. J. Labelled Compd. Radiopharm. 2018, 61, 1012.
(7) For seminal studies, see: (a) Okada, K.; Okamoto, K.; Oda, M. A
New and Practical Method of Decarboxylation: Photosensitized
Decarboxylation of N-Acyloxyphthalimides via Electron-Transfer
Mechanism. J. Am. Chem. Soc. 1988, 110, 8736. (b) Okada, K.;
Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. Photosensitized
Decarboxylative Michael Addition Through N-(Acyloxy)phthalimides
via an Electron-Transfer Mechanism. J. Am. Chem. Soc. 1991, 113,
9401. For recent investigations, see: (c) Cornella, J.; Edwards, J. T.;
Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.;
Schmidt, M.; Eastgate, M. D.; Baran, P. S. Practical Ni-Catalyzed
Aryl−Alkyl Cross-Coupling of Secondary Redox-Active Esters. J. Am.
Chem. Soc. 2016, 138, 2174. (d) Qin, T.; Cornella, J.; Li, C.; Malins,
L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.;
Baran, P. S. A General Alkyl-Alkyl Cross-Coupling Enabled by Redox-
Active Esters and Alkylzinc Reagents. Science 2016, 352, 801.
(e) Wang, J.; Qin, T.; Chen, T.-G.; Wimmer, L.; Edwards, J. T.;
Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Nickel-Catalyzed
Cross-Coupling of Redox-Active Esters with Boronic Acids. Angew.
Chem., Int. Ed. 2016, 55, 9676. (f) Toriyama, F.; Cornella, J.;
Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S.
Redox-Active Esters in Fe-Catalyzed C−C Coupling. J. Am. Chem.
Soc. 2016, 138, 11132. (g) Qin, T.; Malins, L. R.; Edwards, J. T.;
Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.;
Yuan, C.; Eastgate, M. D.; Baran, P. S. Nickel-Catalyzed Barton
Decarboxylation and Giese Reactions: A Practical Take on Classic
Transforms. Angew. Chem., Int. Ed. 2017, 56, 260. (h) Sandfort, F.;
O’Neill, M. J.; Cornella, J.; Wimmer, L.; Baran, P. S. Alkyl−
(Hetero)aryl Bond Formation via Decarboxylative Cross-Coupling: A
Systematic Analysis. Angew. Chem., Int. Ed. 2017, 56, 3319.
(i) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K.
W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-
L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Decarboxylative
Alkenylation. Nature 2017, 545, 213. (j) Smith, J. M.; Qin, T.;
Merchant, R. R.; Edwards, J. T.; Malins, L. R.; Liu, Z.; Che, G.; Shen,
Z.; Shaw, S. A.; Eastgate, M. D.; Baran, P. S. Decarboxylative
Alkynylation. Angew. Chem., Int. Ed. 2017, 56, 11906. (k) Wang, J.;
Lundberg, H.; Asai, S.; Martin-Acosta, P.; Chen, J. C.; Brown, S.;
Farrell, W.; Dushin, R.; O’Donnell, C. J.; Ratnayake, A. S.;
Richardson, P.; Liu, Z.; Qin, T.; Blackmond, D. G.; Baran, P. S.
Kinetically Guided Radical-Based Synthesis of C(sp3)−C(sp3)
Linkages on DNA. Proc. Natl. Acad. Sci. U. S. A. 2018, 115,
No. E6404. (l) Chen, T.-G.; Barton, L. M.; Lin, Y.; Tsien, J.; Kossler,
D.; Bastida, I.; Asai, S.; Bi, C.; Chen, J. S.; Shan, M.; Fang, H.; Fang, F.
G.; Choi, H.; Hawkins, L.; Qin, T.; Baran, P. S. Building C(sp3)-Rich
Complexity by Combining Cycloaddition and C-C Cross-Coupling
Reactions. Nature 2018, 560, 350. (m) Wang, J.; Shang, M.;
Lundberg, H.; Feu, K. S.; Hecker, S. J.; Qin, T.; Blackmond, D. G.;
Baran, P. S. Cu-Catalyzed Decarboxylative Borylation. ACS Catal.
2018, 8, 9537. (n) Ni, S.; Garrido-Castro, A.; Merchant, R.;
deGruyter, J.; Schmitt, D. C.; Mousseau, J. J.; Gallego, G. M.; Yang,
S.; Collins, M. R.; Qiao, J. X.; Yeung, K.-S.; Langley, D. R.; Poss, M.
A.; Scola, P. M.; Qin, T.; Baran, P. S. A General Amino Acid Synthesis
Enabled by Innate Radical Cross-Coupling. Angew. Chem., Int. Ed.
2018, 57, 14560. (o) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.;
Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.;
Kim, S.; Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-
Electrophile Coupling of N-Hydroxyphthalimide Esters with Aryl
Iodides. J. Am. Chem. Soc. 2016, 138, 5016. (p) Jamison, C. R.;
Overman, L. E. Fragment Coupling with Tertiary Radicals Generated
by Visible-Light Photocatalysis. Acc. Chem. Res. 2016, 49, 1578.
(q) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.;
Aggarwal, V. K. Photoinduced Decarboxylative Borylation of
Carboxylic Acids. Science 2017, 357, 283. (r) Zhao, W.; Wurz, R.
P.; Peters, J. C.; Fu, G. C. Photoinduced, Copper-Catalyzed
Decarboxylative C−N Coupling to Generate Protected Amines: An
Alternative to the Curtius Rearrangement. J. Am. Chem. Soc. 2017,
139, 12153. (s) Candish, L.; Teders, M.; Glorius, F. Transition-Metal-
Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-
Hydroxyphthalimide Esters. J. Am. Chem. Soc. 2017, 139, 7440. (t) Li,
H.; Breen, C. P.; Seo, H.; Jamison, T. F.; Fang, Y.-Q.; Bio, M. M. Ni-
Catalyzed Electrochemical Decarboxylative C−C Couplings in Batch
and Continuous Flow. Org. Lett. 2018, 20, 1338. (u) Mao, R.; Balon,
J.; Hu, X. Decarboxylative C(sp3)−O Cross-Coupling. Angew. Chem.,
Int. Ed. 2018, 57, 13624. (v) Liu, X.-G.; Zhou, C.-J.; Lin, E.; Han, X.-
L.; Zhang, S.-S.; Li, Q.; Wang, H. Decarboxylative Negishi Coupling
of Redox-Active Aliphatic Esters by Cobalt Catalysis. Angew. Chem.,
Int. Ed. 2018, 57, 13096.
(8) For reviews on metal-catalyzed carboxylation of organic
̈
(pseudo)halides, see: (a) Borjesson, M.; Moragas, T.; Gallego, D.;
Martin, R. Metal-Catalyzed Carboxylation of Organic (Pseudo)-
́
halides with CO2. ACS Catal. 2016, 6, 6739. (b) Tortajada, A.; Julia-
́
Hernandez, F.; Borjesson, M.; Moragas, T.; Martin, R. Transition-
Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide.
Angew. Chem., Int. Ed. 2018, 57, 15948.
(9) Carbon dioxide, generated from [14C]-BaCO3, is the standard
chemical form of carbon-14 and the precursor to a variety of other
labeled starting materials, see ref 1a.
(10) The maximum theoretical specific activity (the radioactivity per
mmol) of carbon-14 is 62.4 mCi per mmol; see: (a) Elmore, C. S. The
Use of Isotopically Labeled Compounds in Drug Discovery. Annu.
Rep. Med. Chem. 2009, 44, 515. For recent examples of low specific
activity carbon-14-labeled drug candidates used in ADME studies,
see: (b) van Andel, L.; Rosing, H.; Tibben, M. M.; Lucas, L.;
́
Lubomirov, R.; Aviles, P.; Francesch, A.; Fudio, S.; Gebretensae, A.;
Hillebrand, M. J. X.; Schellens, J. H. M.; Beijnen, J. H. Metabolite
Profiling of the Novel Anti-Cancer Agent, Plitidepsin, in Urine and
Faeces in Cancer Patients after Administration of 14C-Plitidepsin.
Cancer Chemother. Pharmacol. 2018, 82, 441. (c) Pusalkar, S.;
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX