746
M. Dieng et al. / Inorganica Chimica Acta 394 (2013) 741–746
to note that in this approach the ground state cannot be the
diamagnetic one, so that a meaningful model has to include a
correction to take into account possible zero field splitting effects
and/or intermolecular interactions:
References
[1] P.J. Toscano, K.A. Belsky, T.C. Hsieh, T. Nicholson, J. Zubieta, Polyhedron 10
(1991) 977.
[2] A.M. Guidote Jr., K. Ando, K. Terada, Y. Kurusu, H. Nagao, Y. Masuyama, Inorg.
Chim. Acta 324 (2001) 203.
[3] S.V. Kolotilov, O. Cador, S. Golhen, O. Shvets, V.G. Ilyin, V.V. Pavlishchuk, L.
Ouahab, Inorg. Chim. Acta 360 (2007) 1883.
[4] S. Durmus, A. Atahan, M. Zengin, Spectrochim. Acta, Part A 84 (2011) 1.
[5] Y. Fan, W. You, W. Huang, J.-L. Liu, Y.-N. Wang, Polyhedron 29 (2010) 1149.
[6] H. Adam, D.E. Fenton, P.E. McHugh, Polyhedron 22 (2003) 75.
[7] L. Latheef, M.R.P. Kurup, Polyhedron 27 (2008) 35.
[8] M.M. Tamizh, K. Mereiter, K. Kirchner, B.R. Bhat, R. Karvembu, Polyhedron 28
(2009) 2157.
[9] N. Goswami, D.M. Eichhorn, Inorg. Chem. 38 (1999) 4329.
[10] E.M. Jouad, A. Riou, M. Allain, M.A. Khan, G.M. Bouet, Polyhedron 20 (2001) 67.
[11] D. Fenton, P.A. Vigato, U. Casellato, R. Graziani, M. Vidali, Inorg. Chim. Acta 51
(1981) 195.
vM
v
¼
1 ꢁ
v
Mh
where
vM is the molar magnetic susceptibility calculated on the ba-
sis of Van Vleck equation and h is a phenomenological parameter
which simulates the effect of zero field splitting effects and/or inter-
molecular interactions.
The best fit values obtained from the experimental data of the
trinuclear complex were, g = 2.196 0.005, J = ꢁ11.12 0.3 cmꢁ1
h = ꢁ0.86 0.06 K.
,
[12] H.J. Banbery, F. McQuillan, T.A. Hamor, C.J. Jones, J.A. McCleverty, Polyhedron 8
(1989) 559.
In order to understand the exchange coupling behavior, it is
important to note that the Ni(II) centers are bridged by two
[13] SHELXTL version, An Integrated System for Solving and Refining Crystal
Structures from Diffraction Data (Revision 5.1), Bruker AXS Ltd., WI, USA, 1997.
[14] G.M. Sheldrick, SHELXTL-97; Program for the Refinement of Crystal Structures,
University of Göttingen, Göttingen, Germany, 1997.
[15] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[16] W.T. Carnall, S. Siegel, J.R. Ferrano, B. Tani, E. Gebert, Inorg. Chem. 12 (1973)
560.
l-Ophenolate atoms. The nature of magnetic interaction is very
dependent on the bond angle M–O–M in multinuclear Ni(II)
complexes [40–43]. Antiferromagnetic interaction is observed for
Ni–O–Ni angles greater than 93.5° while ferromagnetic coupling
is observed for angle value lower than 93.5°. In the trinuclear com-
plex under study, bond angles of Ni1–O1–Ni2 and Ni1–O2–Ni2 are
97.4(1)° and 99.9(1)°, respectively. These values are greater than
93.5° which belong to the category of an antiferromagnetic
coupling [43]. The antiferromagnetic parameters of the trinuclear
complex are close to other nickel(II) complexes bridged by
phenolate oxygen atoms [44].
[17] J.R. Ferrano, J. Mol. Spectrosc. 4 (1960) 99.
[18] K.D. Suresh, V. Alexander, Inorg. Chim. Acta 238 (1995) 63.
[19] V.A.J. Aruna, V.J.J. Alexander, J. Chem. Soc., Dalton Trans. (1996) 867.
[20] S. Chandra, A.K. Sharma, Spectrochim. Acta, Part A 72 (2009) 851.
[21] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[22] M.J. Prushan, D.M. Tomezsko, S. Lofland, M. Zeller, A.D. Hunter, Inorg. Chim.
Acta 360 (2007) 2245.
[23] S. Tanase, M. Ferbinteanu, M. Andruh, C. Mathonière, I. Strenger, G. Rombaut,
Polyhedron 19 (2000) 1967.
[24] S.-Y. Zhang, B. Xu, L. Zheng, W. Chen, Y. Li, W. Li, Inorg. Chim. Acta 367 (2011)
44.
[25] S. Datta, D.K. Seth, R.J. Butcher, S. Bhattacharya, Inorg. Chim. Acta 377 (2011)
120.
4. Conclusion
[26] P.K. Dhara, S. Sarkar, M.G.B. Drew, M. Nethaji, P. Chattopadhyay, Polyhedron
27 (2008) 2447.
[27] H. Luo, J.-M. Lo, P.E. Fanwick, J.G. Stowell, M.A. Green, Inorg. Chem. 38 (1999)
2071.
[28] J.L. Atwood, S.G. Bott, R.L. Vincent, J. Cryst. Spectrosc. Res. 20 (1990) 631.
[29] M. Bröring, S. Prikhodovski, C.D. Brandt, Inorg. Chim. Acta 357 (2004) 1733.
[30] J. Cernák, A. Pavlová, M. Dusek, K. Fejfarová, Acta Crystallogr., Sect. C 65 (2009)
m260.
[31] A. Mustapha, P. Duckmanton, J. Reglinski, A.R. Kennedy, Polyhedron 29 (2010)
2590.
[32] J.L. Chang, Z.Y. Gao, Acta Crystallogr., Sect. E 67 (2011) m1506.
[33] A. Rujiwatra, S. Yimklan, T.J. Prior, Polyhedron 21 (2012) 345.
[34] J.-H. Zhou, R.-M. Cheng, Y. Song, Y.-Z. Li, Z. Yu, X.-T. Chen, X.-Z. You, Polyhedron
25 (2006) 2426.
[35] Y. Aratake, M. Ohba, H. Sakiyama, M. Tadokoro, N. Matsumoto, H. Okawa,
Inorg. Chim. Acta 212 (1993) 183.
[36] S.K. Dey, N. Mondal, S.E. Fallah, R. Vincete, A. Escuer, X. Solans, M. Font-Bardıá,
T. Matsushita, V. Gramlich, S. Mitra, Inorg. Chem. 43 (2004) 2427.
[37] K.K. Nanda, R. Das, L.K. Thompson, J.N. Bridson, K. Nag, Chem. Commun. (1994)
1337.
The pentadentate salicylaldimine acyclic Schiff base ligand H2L
and their reduced derivative H4L1 were prepared in a good yield.
Starting from those ligands, dinuclear and trinuclear phenoxo
bridged complexes were obtained from the reaction with nitrate
and perchlorate Ni(II) salts in methanol. The ligands adopt a dian-
ionic and pentadentated coordination nature. The complexes show
the metal ion in a distorted octahedral geometry. For the trinuclear
complex [Ni3(H2L1)2(NO3)2] (3), the nitrate groups act as bridge
between the terminal nickel ions and the central one. Few exam-
ples of this behavior of nitrate in multinuclear nickel complexes
have been reported in the literature. The magnetic data of
complexes 1 and 3 indicate that antiferromagnetic coupling occurs
via the phenoxo bridge.
[38] K.K. Nanda, R. Das, M.J. Newlands, R. Hynes, E.J. Gabe, K. Nag, J. Chem. Soc.,
Dalton Trans. (1992) 897.
Appendix A. Supplementary material
[39] H. Sakiyama, K. Tone, M. Yamasaki, M. Mikuriya, Inorg. Chim. Acta 365 (2011)
183.
[40] X.-H. Bu, M. Du, L. Zhang, D.-Z. Liao, J.-K. Tang, R.-H. Zhang, M. Shionoya, J.
Chem. Soc., Dalton Trans. (2001) 593.
[41] Q.-L. Wang, C. Yang, L. Qi Jr., D.Z. Liao, G.M. Yang, H.X. Ren, J. Mol. Struct. 892
(2008) 88.
[42] C.J. O’Connor, Prog. Inorg. Chem. 29 (1982) 203.
[43] A.K. Sharma, F. Lloret, R. Mukherjee, Inorg. Chem. 46 (2007) 5128.
[44] P. Mukherjee, M.G.B. Drew, V. Tangoulis, M. Estrader, C. Diaz, A. Ghosh,
Polyhedron 28 (2009) 2989.
CCDC 868781 and 868782 contain the supplementary crystallo-
graphic data for [(NiL)2]ꢀCH3OHꢀ4H2O (1) and [Ni3(H2L1)2(NO3)2]
(3), respectively. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via http://
ated with this article can be found, in the online version, at http://