R. Kolodziuk et al. / Journal of Organometallic Chemistry 687 (2003) 384ꢀ
/391
391
Jꢂ
0.87H, H-6a), 4.55 (dd, Jꢂ
4.75ꢀ4.86 (m, 1.74H, H-3a, H-5a), 5.11 (ddd, Jꢂ
8.5, 3.2 Hz, 0.87H, H-2a), 5.50 (bs, 4H, OH), 5.59 (d,
Jꢂ8.3 Hz, 0.13H, H-1b), 6.08 (d, Jꢂ3.2 Hz, 0.87H, H-
1a), 7.33ꢀ7.45 (m, 12H, Harom), 8.15ꢀ8.22 (m, 2H,
arom), 8.99 (d, Jꢂ8.5, 0.87H, NH), 9.43 (d, Jꢂ8.7,
0.13H, NH); 31P-NMR (C5D5N): d ꢄ
4.4. HRMS of
C25H27O6NP Calc. [Mꢁ
H]ꢁ 468.1576, Found:
468.1572.
/
9.4, 9.0 Hz, 0.87H, H-4a), 4.41 (dd, Jꢂ
11.7, 2.3 Hz, 0.87H, H-6a),
10.4,
/
11.7, 5.7 Hz,
CH3CO2Et 90:10 as the eluent to give 193 mg of
phosphine 1b (yieldꢂ88%).
/
/
/
/
4.8. Typical cross-coupling procedure
/
/
/
/
Pd(OAc)2 (1.5 mg, 7 mmol) and the ligand (21 mmol)
were placed in a flask under argon. Degassed water (1
ml) and ethanol (2 ml) were added and the solution was
stirred for 30 min. A mixture of aryl halide (0.7 mmol)
and boronic acid (0.8 mmol) in a mixture of toluene (6
ml) and ethanol (2 ml) was then added in the flask,
followed by Na2CO3 (212 mg, 2.0 mmol) dissolved in
water (3 ml). The resulting mixture was stirred at the
desired temperature. After the indicated time, the
mixture was cooled at r.t., the two phases were
separated, the ethanol/H2O layer was washed twice
with toluene. The combined organic phases were dried
over Na2SO4, and concentrated in vacuo. Purification of
the crude product by flash-chromatography on silica gel
gave the coupling product.
H
/
/
/
/
4.6.2. 2-Deoxy-2-({[2-(dimethylamino)-5-
(diphenylphosphino)-1,3-thiazol-4-yl]acetyl}amino)-
glucopyranose (3a)
D-
Yield 90%; m.p. 120ꢀ
C2H5OH 4:1); [a]D20ꢂ 16.6 (c 1, CHCl3); 1H-NMR
(C5D5N): d 2.78 (s, 6H, NMe2), 3.95 (dm, Jꢂ9.5 Hz,
0.2H, H-5b), 4.15 (dd, Jꢂ9.5, 8.5 Hz, 0.2H, H-4b), 4.24
(dd, Jꢂ9.2, 9.2 Hz, 0.8H, H-4a), 4.30ꢀ4.40 (m, 3H, H-
6, COCH2), 4.51 (dd, Jꢂ11.5, 2.1 Hz, 0.8H, H-6a), 4.66
(dd, Jꢂ10.5, 9.2 Hz, 0.8H, H-3a), 4.74 (ddd, Jꢂ9.2,
5.3, 2.1 Hz, 0.8H, H-5a), 4.85 (ddd, Jꢂ10.5, 8.5, 3.0 Hz,
0.8H, H-2a), 4.97 (bs, 4H, OH), 5.36 (d, Jꢂ8.3 Hz,
0.2H, H-1b), 5.86 (d, Jꢂ3.0 Hz, 0.8H, H-1a), 7.26ꢀ7.39
(m, 6H, Harom), 7.58ꢀ7.68 (m, 4H, Harom), 9.04 (d, Jꢂ
8.5, 0.8H, NH), 9.24 (d, Jꢂ
7.5, 0.2H, NH); 31P-NMR
(C5D5N): d ꢄ27.6. HRMS of C25H31O6N3PS Calc.
[Mꢁ
H]ꢁ 532.1671, Found: 532.1675.
/
124 8C; Rfꢂ0.53 (CHCl3/
/
/
ꢁ
/
/
/
/
/
/
/
/
/
/
Acknowledgements
/
/
/
/
A.I., R.K., M.T. and A.P. thank the CNRS, Re´gion
Rhoˆne-Alpes, and the MENSR, respectively, for a
fellowship.
/
/
/
4.6.3. 2-Deoxy-2-({[2-(morpholin-4-yl)-5-
(diphenylphosphino)-1,3-thiazol-4-yl]acetyl}amino)-
glucopyranose (3a)
References
D-
[1] (a) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457;
(b) A. Suzuki, J. Organomet. Chem. 576 (1999) 147;
(c) A. Suzuki, in: F. Diederich, P.J. Stang (Eds.), Metal-Catalyzed
Cross-Coupling Reactions, VCH, Weinheim, 1998, p. 49;
(d) S.P. Stanforth, Tetrahedron 54 (1998) 263.
Yield 94%; m.p. 102ꢀ
C2H5OH 3:1); [a]D20ꢂ 14.2 (c 1, CHCl3); 1H-NMR
(C5D5N): d 3.23ꢀ3.35 (m, 4H, NCH2), 3.44ꢀ3.57 (m,
4H, OCH2), 3.94 (dm, Jꢂ9.2 Hz, 0.15H, H-5b), 4.15
(dd, Jꢂ9.2, 8.7 Hz, 0.15H, H-4b), 4.24 (dd, Jꢂ9.2, 9.2
Hz, 0.85H, H-4a), 4.30ꢀ4.40 (m, 3H, H-6, COCH2),
4.50 (dd, Jꢂ11.7, 2.0 Hz, 0.85H, H-6a), 4.65 (dd, Jꢂ
10.7, 9.2 Hz, 0.85H, H-3a), 4.71 (ddd, Jꢂ9.2, 5.5, 2.0
Hz, 0.85H, H-5a), 4.85 (ddd, Jꢂ10.7, 8.5, 3.4 Hz,
0.85H, H-2a), 5.36 (d, Jꢂ8.1 Hz, 0.15H, H-1b), 5.86 (d,
Jꢂ3.4 Hz, 0.85H, H-1a), 6.10 (bs, 4H, OH), 7.29ꢀ7.41
(m, 6H, Harom), 7.59ꢀ7.71 (m, 4H, Harom), 9.01 (d, Jꢂ
8.5, 0.85H, NH), 9.25 (d, Jꢂ
7.6, 0.15H, NH); 31P-
NMR (C5D5N): d ꢄ27.8. HRMS of C27H33O7N3PS
Calc. [Mꢁ
H]ꢁ 574.1777, Found: 574.1774.
/
105 8C; Rfꢂ
/
0.48 (CHCl3/
/
ꢁ
/
/
/
/
[2] (a) B. Cornils, W.A. Herrmann (Eds.), Aqueous-Phase Organo-
metallic Catalysis. Concepts and Applications, VCH, Weinheim,
1998;
/
/
/
/
/
(b) B.E. Hanson, Coord. Chem. Rev. 185ꢀ186 (1999) 795;
/
/
(c) D. Sinou, Top Curr. Chem. 206 (1999) 41.
[3] (a) A.L. Casalnuovo, J.C. Calabrese, J. Am. Chem. Soc. 112 (1990)
4324;
/
/
(b) J.-C. Galland, M. Savignac, J.-P. Geneˆt, Tetrahedron Lett. 40
(1999) 2323;
/
/
/
/
(c) C. Dupuis, K. Adley, L. Charruault, V. Michelet, M. Savignac,
J.-P. Geneˆt, Tetrahedron Lett. 42 (2001) 6523.
[4] (a) M. Beller, J.G.E. Krauter, A. Zapf, Angew. Chem. Int. Ed.
Engl. 36 (1997) 772;
/
/
/
(b) M. Beller, J.G.E. Krauter, A. Zapf, S. Bogdanovic, Catal.
Today 48 (1999) 279.
4.7. Saponification of peracetylated phosphine 1a
[5] (a) M. Ueda, M. Nishimura, N. Miyaura, Synlett (2000) 856;
(b) M. Nishimura, M. Ueda, N. Miyaura, Tetrahedron 58 (2002)
5779.
To the acetylated phosphine 1a (300 mg, 0.47 mmol)
dissolved in THF (10 ml) under argon was slowly added
a solution of Na (20 mg, 0.87 mmol) in CH3OH (5 ml).
After being stirred for 1 h at r.t., the solvent was
evaporated to give a yellow solid that was purified by
flash-chromatography on silica gel using CH2Cl2/
[6] S. Parisot, R. Kolodziuk, C. Goux-Henry, A. Iourtchenko, D.
Sinou, Tetrahedron Lett. 43 (2002) 7397.
[7] P. Boullanger, M. Jouineau, B. Bouammali, D. Lafont, G.
Descotes, Carbohydr. Res. 202 (1990) 151.
[8] M. Tollabi, E. Framery, C. Goux-Henry, D. Sinou, Tetrahedron:
Asymm., in press.