Organic Letters
Letter
method allows for the silylation C(sp3)−H bonds adjacent to
amide nitrogen atoms at room temperature. The starting
material, that is, the N-halogenated amide, can be prepared in
situ and used without further purification in the subsequent
copper-catalyzed silylation.
Scheme 2. Procedure on Larger Scale without Purification
of the N-Chlorosulfonamide
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
To gain preliminary insight into the reaction mechanism,
specifically the formation of the imine 4a, we performed two
control experiments (Scheme 3). The reaction of 1a in the
Experimental procedures and spectral data for all new
Scheme 3. Control Experiments
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
J.-J.F. gratefully acknowledges the Alexander von Humboldt
Foundation for a postdoctoral fellowship (2017−2019). M.O.
is indebted to the Einstein Foundation (Berlin) for an
endowed professorship.
absence of the Si−B reagent did form imine 4a in 64% NMR
yield along with amine 3a in 25% NMR yield (top). Treatment
of 4a with the standard setup then gave α-silylated amine 2a in
85% NMR yield (bottom).7a
On the basis of these control experiments and previous
experimental observations, we believe that the catalysis
proceeds through the imine (gray box, Scheme 4) that, in
REFERENCES
■
(1) For reviews, see: (a) Moriyama, K. Tetrahedron Lett. 2017, 58,
4655−4662. (b) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37,
1490−1501.
(2) For examples of the construction of C−X bonds by cross
couplings of C(sp3)−H bonds adjacent to nitrogen atoms with
noncarbon nucleophiles, see the following. C−O bonds: (a) Muraha-
shi, S.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.;
Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820−7822. (b) Yu, P.;
Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu,
X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890−11894. (c) Yu, H.;
Shen, J. Org. Lett. 2014, 16, 3204−3207. C−N bonds: (d) Zhang, Y.;
Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2007, 9, 3813−3816. (e) Xia, Q.;
Chen, W. J. Org. Chem. 2012, 77, 9366−9373. (f) Mao, X.; Wu, Y.;
Jiang, X.; Liu, X.; Cheng, Y.; Zhu, C. RSC Adv. 2012, 2, 6733−6735.
Scheme 4. Proposed Mechanism of Imine Formation
́
C−P bonds: (g) Basle, O.; Li, C.-J. Chem. Commun. 2009, 4124−
4126. (h) Yang, B.; Yang, T.-T.; Li, X.-A.; Wang, J.-J.; Yang, S.-D. Org.
Lett. 2013, 15, 5024−5027. C−S bonds: (i) Tang, R.-Y.; Xie, Y.-X.;
Xie, Y.-L.; Xiang, J.-N.; Li, J.-H. Chem. Commun. 2011, 47, 12867−
12869.
turn, undergoes conventional copper-catalyzed 1,2-addition of
the silicon nucleophile (not shown).7 That would also explain
the higher yields seen with aldimines compared to the ketimine
(see Table 3, entry 11). Two pathways explain the formation
of the imine (Scheme 4):17c Path a is radical with Cu(I)-
mediated N−Cl cleavage to generate the corresponding
sulfonamidyl radical and Cu(II) (1a → 27a);19 27a then
converts into carbon-centered radical 28a by a 1,2-H shift20
followed by Cu(II)-promoted oxidation to 29a. Deprotonation
of iminium ion 29a yields the imine 4a. Path b cannot be
excluded as 4a is also formed from 1a by base-mediated β-
elimination21 (cf. Table 1, entry 2).
(3) For a representative example, see: Barberis, C.; Voyer, N.; Roby,
́
J.; Chenard, S.; Tremblay, M.; Labrie, P. Tetrahedron 2001, 57, 2965−
2972.
(4) Mita, T.; Michigami, K.; Sato, Y. Chem. - Asian J. 2013, 8, 2970−
2973.
(5) Liu, P.; Tang, J.; Zeng, X. Org. Lett. 2016, 18, 5536−5539.
(6) For a review of the synthesis of α-silylated amines, see: Min, G.
́
K.; Hernandez, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457−470.
̈
(7) (a) Vyas, D. J.; Frohlich, R.; Oestreich, M. Org. Lett. 2011, 13,
2094−2097. (b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M.
Angew. Chem., Int. Ed. 2014, 53, 4964−4967. (c) Mita, T.; Sugawara,
M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028−3031. (d) Zhao, C.;
Jiang, C.; Wang, J.; Wu, C.; Zhang, Q.-W.; He, W. Asian J. Org. Chem.
2014, 3, 851−855.
In summary, we have introduced here a new approach to the
synthesis of synthetically valuable6,22 α-silylated amines. The
C
Org. Lett. XXXX, XXX, XXX−XXX