5590
V.A. Sauro et al. / Electrochimica Acta 55 (2010) 5584–5591
the Eo for the benzyl radical is −1.45 V versus SCE [27]. In this case,
reduction of the 1-H/H• is an uphill process with a lower khet. The
inductive effect of an azo group on the Eo of benzyl radicals is not
known, but it is anticipated to shift Eo to more positive potentials
due to its electron-withdrawing properties (ꢄI = 0.30 for –N N–Ph)
[29]. From the mechanistic pathway we would expect to observe
coupling products or other products derived from the radical inter-
mediate (route 1). The absence of this observation suggests the
mechanism proceeds by route 2, although neither can be ruled
out. A third possible mechanism, involves the double simultane-
with loss of both chlorides to yield the dibenzylic diradical, which
is a minor resonance structure better written as the azine. A sim-
ilar mechanism was ruled out by Savéant and coworkers in the
reduction of a number of vicinal dihalides, otherwise known as 1,2-
the dissociative reduction for 1-X/Y such a mechanism is consid-
ered unlikely.
Vicinal dihalides have been also studied by Lund and cowork-
ers [30]. The CVs exhibited an irreversible two-electron reduction
wave followed by a more negative reversible one-electron wave.
The first wave was attributed to reductive cleavage of the C–X
bonds followed by elimination of the second halogen to yield elec-
troactive E-stilbene products. Although they did not apply Savéant
DET theory, they did suggest a concerted DET mechanism. In con-
trast, we show that 1,4-dichloroazoethanes react by a stepwise DET
mechanism. The key difference between the two classes of com-
pounds is the azo group, which appears to contribute to lowering
intrinsic barriers regardless of the substituent on the aryl moiety.
In the case of diaryl disulfides, the ET mechanism was within the
stepwise and concerted [12a,18]. In our recent study of 3,3,6,6-
tetraaryl-1,2-dioxanes, we discovered that the intrinsic barriers
were inconsistent with a purely concerted DET to the O–O bonds
[17k]. Density functional theory calculations illustrated that the
LUMO was not localized on the O–O bond, but rather delocalized
over a large molecular framework including the equatorial aryl
rings, the adjacent C–O bond and the O–O bond.
ORCDF, and the University of Western Ontario (ADF) is greatly
appreciated. VAS thanks the OGS program for a scholarship. DCM
thanks the OGSST program for a scholarship.
References
[1] P.S. Engel, Chem. Rev. 80 (1980) 99.
[2] P.S. Engel, S. Duan, G.B. Arhancet, J. Org. Chem. 62 (1997) 3537.
[3] P.S. Engel, S.L. He, W.B. Smith, J. Am. Chem. Soc. 119 (1997) 6059.
[4] S.K. Danek, D.P. Kelly, A.K. Serelis, J. Org. Chem. 52 (1987) 2911.
[5] S. Patai, in: S. Patai (Ed.), The Chemistry of the Hydrazo, Azo and Azoxy Groups,
John Wiley & Sons, New York, 1975.
[6] C.F. Billera, T.B. Dunn, D.A. Barry, P.S. Engel, J. Org. Chem. 63 (1998) 9763.
[7] P.S. Engel, L. Pan, K.H. Witmire, I. Guzman-Jimenez, J. Org. Chem. 65 (2000)
1016.
[8] S. Engel, L. Pan, Y. Ying, L.B. Alemany, J. Am. Chem. Soc. 123 (2001) 3706.
[9] J.P. Stradins, V.T. Glezer, in: A.J. Bard, H. Lund (Eds.), Azo, Azoxy and Diazo
Compounds, vol. 13, Marcel Dekker Inc., New York, 1979.
[10] N. Levi, D.S. Malament, J. Chem. Soc. Perkin Trans. II (1976) 1249.
[11] (a) J.-M. Savéant, in: D. Bethel (Ed.), Advances in Physical Organic Chemistry,
vol. 26, Academic Press, New York, 1990, p. 1;
(b) J.-M. Savéant, in: P.S. Mariano (Ed.), Advances in Electron Transfer Chem-
istry, vol. 4, JAI Press, Greenwich, CT, 1994, p. 53;
(c) J.-M. Savéant, Acc. Chem. Res. 26 (1993) 455;
(d) J.-M. Savéant, in: T. Tidwell (Ed.), Advances in Physical Organic Chemistry,
vol. 35, Academic Press, New York, 2000, p. 117;
(e) C. Costentin, M. Robert, J.-M. Savéant, Chem. Phys. 324 (2006) 40;
(f) C. Costentin, L. Donati, M. Robert, Chem. Eur. J. 15 (2009) 785.
[12] (a) F. Maran, D.D.M. Wayner, M.S. Workentin, in: T.T. Tidwell (Ed.), Advances
in Physical Organic Chemistry, vol. 36, Academic Press, New York, 2001, p. 85;
(b) S. Antonello, F. Maran, Chem. Soc. Rev. 34 (2005) 418.
[13] R.A. Rossi, A.B. Pierini, A.B. Penenory, Chem. Rev. 103 (2003) 71.
[14] A. Houmam, Chem. Rev. 108 (2008) 2180.
[15] Examples of aryl halides:
(a) C.P. Andrieux, I. Gallardo, J.M. Savéant, K.B. Su, J. Am. Chem. Soc. 108 (1986)
638;
(b) C.P. Andrieux, A.L. Gorande, J.-M. Savéant, J. Am. Chem. Soc. 114 (1992)
6892;
(c) C.P. Andrieux, C. Comgellas, J. Kanoufi, J.-M. Savéant, A. Thiebault, J. Am.
Chem. Soc. 119 (1997) 9527;
(d) C.P. Andrieux, E. Differding, M. Robert, J.-M. Savéant, J. Am. Chem. Soc. 115
(1993) 6592;
(e) C.P. Andrieux, J.-M. Savéant, A. Tallec, R. Tardivel, C. Tardy, J. Am. Chem. Soc.
119 (1997) 2420;
(f) R. Fuhlendorff, D. Occhialini, S.U. Pedersen, H. Lund, Acta. Chem. Scand. 43
(1989) 803;
(g) D. Occhialini, S.U. Pedersen, H. Lund, Acta. Chem. Scand. 44 (1990) 715;
(h) D. Occhialini, J.S. Kristensen, K. Daasbjerg, H. Lund, Acta. Chem. Scand. 46
(1992) 474.
[16] Examples of alkyl halides:
(a) L. Pause, M. Robert, J.-M. Savéant, J. Am. Chem. Soc. 122 (2000) 9829;
(b) A. Cardinale, A.A. Isse, A. Gennaro, M. Robert, J.-M. Savéant, J. Am. Chem.
Soc. 124 (2002) 13533;
5. Conclusions
(c) K. Daasbjerg, S.U. Pedersen, H. Lund, Acta Chem. Scand. 43 (1989) 876;
(d) T. Lund, H. Lund, Acta Chem. Scand. B 41 (1987) 93;
(e) L. Pause, M. Robert, J.-M. Savéant, J. Am. Chem. Soc. 121 (1999) 7158;
(f) D. Lexa, J.-M. Savéant, K.B. Su, D.L. Wang, J. Am. Chem. Soc. 109 (1987) 6464;
(g) H. Jensen, K. Daasbjerg, J. Chem. Soc. Perkin Trans. 2 (2000) 1251;
(h) K. Daasbjerg, T.B. Christensen, Acta Chem. Scand. 49 (1995) 128;
(i) X.-M. Zhang, J. Chem. Soc. Perkin Trans. 2 (1993) 2275;
(j) C. Costentin, J.-M. Savéant, J. Am. Chem. Soc. 122 (2000) 2329;
(k) C. Costentin, P. Hapiot, M. Medebielle, J.-M. Savéant, J. Am. Chem. Soc. 122
(2000) 5623.
The present study on the electrochemical reduction of a series
of substituted 1,4-dichloroazoethanes, 1-X/Y, provides an unprece-
dented illustration of molecular systems containing two halides,
separated by three bonds, that react through a dissociative electron
transfer mechanism to yield azine products. The initial reduction
proceeds by DET to cleave a C–Cl bond. The low intrinsic barriers
suggest the reduction proceeds by a stepwise DET throughout the
series in contrast to benzyl halides and vicinal dihalides. We pos-
tulate the azo moiety facilitates the stepwise pathway by lowering
cases. The stable carbon radical formed after dissociation is then
reduced directly by the electrode as the reduction potentials of
the radicals are generally expected to be more positive than the
applied electrode potential [17g,27], resulting in an anionic inter-
mediate, and the expulsion of chloride to form 2-X/Y azines. Unlike
the photochemical reactions, no coupling products were observed
from carbon radical intermediates. Hence, we provide an efficient
route to obtaining pure azines in quantitative yield.
[17] (a) M.S. Workentin, F. Maran, D.D.M. Wayner, J. Am. Chem. Soc. 117 (1995)
2120;
(b) S. Antonello, F. Maran, J. Am. Chem. Soc. 119 (1997) 12595;
(c) S. Antonello, F. Maran, J. Am. Chem. Soc. 121 (1999) 9668;
(d) S. Antonello, M. Musumeci, D.D.M. Wayner, F. Maran, J. Am. Chem. Soc. 119
(1997) 9541;
(e) M.S. Workentin, R.L. Donkers, J. Am. Chem. Soc. 120 (1998) 2664;
(f) R.L. Donkers, F. Maran, D.D.M. Wayner, M.S. Workentin, J. Am. Chem. Soc.
121 (1999) 7239;
(g) R.L. Donkers, M.S. Workentin, Chem. Eur. J. 7 (2001) 4012;
(h) D.C. Magri, M.S. Workentin, Org. Biomol. Chem. 1 (2003) 3418;
(i) D.C. Magri, M.S. Workentin, Org. Biomol. Chem. 18 (2008) 3354;
(j) D.C. Magri, M.S. Workentin, Chem. Eur. J. 14 (2008) 1698;
(k) D.L.B. Stringle, D.C. Magri, M.S. Workentin, Chem. Eur. J. 16 (2010) 178.
[18] (a) T.B. Christensen, K. Daasbjerg, Acta Chem. Scand. 51 (1997) 307;
(b) K. Daasbjerg, H. Jensen, R. Benassi, F. Taddei, S. Antonello, A. Gennaro, F.
Maran, J. Am. Chem. Soc. 121 (1999) 1750;
Acknowledgements
(c) S. Antonello, R. Benassi, G. Gavioli, F. Taddei, F. Maran, J. Am. Chem. Soc. 124
(2002) 7529;
(d) S. Antonello, K. Daasbjerg, H. Jensen, F. Taddei, F. Maran, J. Am. Chem. Soc.
125 (2003) 14905.
The financial support of the Natural Science and Engineering
Research Council of Canada, Canadian Foundation for Innovation,