Junichi Hori et al.
COMMUNICATIONS
argon, degassed DMF (43.8 mL) was added, and the mixture
was stirred at 258C for 10 min to give a deep orange solu-
tion. To this solution were added 2a (483 mg, 4.38 mmol)
and t-C4H9OK (98.3 mg, 0.876 mmol), and the mixture was
stirred at 258C for 12 h, resulting in a dark brown solution
of 1a (10.0 mM) which was used as a stock catalyst solution.
4058–4060; e) J. G. Ulan, W. F. Maier, D. A. Smith, J.
Org. Chem. 1987, 52, 3132–3142; f) B. M. Choudary,
G. V. M. Sharma, P. Bharathi, Angew. Chem. 1989, 101,
506–507; Angew. Chem. Int. Ed. Engl. 1989, 28, 465–
466; g) X.-C. Guo. R. J. Madix, J. Catal. 1995, 155, 336–
344; h) N. M. Yoon, K. B. Park, H. J. Lee, J. Choi, Tet-
rahedron Lett. 1996, 37, 8527–8528; i) M. Gruttadauria,
R. Noto, G. Deganello, L. F. Liotta, Tetrahedron Lett.
1999, 40, 2857–2858; j) K. R. Campos, D. Cai, M. Jour-
net, J. J. Kowal, R. D. Larsen, P. J. Reider, J. Org.
Chem. 2001, 66, 3634–3635.
Typical Procedure for the Hydrogenation of 2a
Alkyne 2a (1.10 g, 10.0 mmol), THF (10 mL), (n-
C4H9)4NBH4 (1.29 mg, 5.0 mmol), and 1a (10.0 mM in DMF,
50 mL, 0.50 mmol; S/Pd=20,000:1) were placed in a 100-mL
glass autoclave equipped with a Teflon-coated magnetic stir-
ring bar. The vessel was placed into a water bath controlled
at 308C. Hydrogen was introduced into the autoclave at a
pressure of 8 atm, and the reaction mixture was vigorously
(1000 rpm) stirred for 5 min. After careful venting of the hy-
drogen gas, the reaction mixture was analyzed by GC:
column, CP Sil PONA CB (0.25 mmꢁ100 m, film thick-
ness=0.50 mm, Varian); carrier gas: helium (228 kPa);
column temperature: 658C; injection temperature: 2308C;
retention time (tR) of (Z)-3a: 29.9 min (99.7%), tR of (E)-3a:
29.0 min (0.3%), tR of 3-octene: 29.5 min (trace), tR of 2-
octene: 30.8 min and 32.6 min (0%), tR of octane: 30.0 min
(trace).
[5] For semihydrogenation catalyzed by Pd nonoparticles,
see: a) C. Ferrari, G. Predieri, A. Tiripicchio, M. Costa,
Chem. Mater. 1992, 4, 243–245; b) G. Schmid, M.
Harns, J. O. Malm, J. O. Bovin, J. V. Ruitenbeck, H. W.
Zandbergen, W. T. Fu, J. Am. Chem. Soc. 1993, 115,
2046–2048; c) G. Schmid, S. Emde, V. Maihack, W.
Meyer-Zaika, St. Peschel, J. Mol. Catal. A: Chemical
1996, 107, 95–104; d) E. Sulman, V. Matveeva, A.
Usanov, Y. Kosivtsov, G. Demidenko, L. Bronstein, D.
Chernyshov, P. Valetsky, J. Mol. Catal. A: Chemical
1999, 146, 265–269; e) L. M. Bronstein, D. M. Cherny-
shov, R. Karlinsey, J. W. Zwanzinger, V. G. Matveeva,
E. M. Sulman, G. N. Demidenko, H.-P. Hentze, M. An-
tonietti, Chem. Mater. 2003, 15, 2623–2631.
[6] a) C. A. Brown, V. K. Ahuja, J. Chem. Soc. Chem.
Commun. 1973, 553–554; b) C. A. Brown, V. K. Ahuja,
J. Org. Chem. 1973, 38, 2226–2230; c) D. Savoia, E. Ta-
gliavini, C. Trombini, A. Umani-Ronchi, J. Org. Chem.
1981, 46, 5340–5343; d) J. Choi, N. M. Yoon, Tetrahe-
dron Lett. 1996, 37, 1057–1060.
Acknowledgements
This work was partly supported by a Grant-in-Aid from the
New Energy and Industrial Technology Development Organ-
ization (NEDO) (Support Program for Technology Develop-
ment on the Basis of Academic Findings).
[7] R. R. Schrock, J. A. Osborn, J. Am. Chem. Soc. 1976,
98, 2143–2147.
[8] a) M. O. Albers, E. Singleton, M. M. Viney, J. Mol.
Catal. 1985, 30, 213–217; b) T. Suares, B. Fontal, J.
Mol. Catal. 1988, 45, 335–344; c) C. Bianchini, C. Bo-
hanna, M. A. Esteruelas, P. Frediani, A. Meli, L. A.
Oro, M. Peruzzini, Organometallics 1992, 11, 3837–
3844.
[9] a) E. W. Stern, P. K. Maples, J. Catal. 1972, 27, 120–
133; b) A. Bacchi, M. Carcelli, M. Costa, P. Pelagatti,
C. Pelizzi, G. Pelizzi, Gazz. Chim. Ital. 1994, 124, 429–
435; c) M. W. van Laren, C. J. Elsevier, Angew. Chem.
1999, 111, 3926–3929; Angew. Chem. Int. Ed. 1999, 38,
3715–3717; d) J. W. Sprengers, J. Wassenaar, N. D.
Clement, K. J. Cavell, C. J. Elsevier, Angew. Chem.
2005, 117, 2062–2065; Angew. Chem. Int. Ed. 2005, 44,
2026–2029; e) A. M. Kluwer, T. S. Koblenz, T. Jonisch-
keit, K. Woelk, C. J. Elsevier, J. Am. Chem. Soc. 2005,
127, 15470–15480.
References
[1] For reviews, see: a) P. Rylander, Catalytic Hydrogena-
tion in Organic Syntheses, Academic Press, New York,
1979, Chapter 2; b) S. Siegel, in: Comprehensive Organ-
ic Synthesis, Vol. 8, (Eds.: B. M. Trost, I. Fleming), Per-
gamon Press, Oxford, 1991, Chapter 3.1; c) H. Takaya,
R. Noyori, in: Comprehensive Organic Synthesis, Vol.
8, (Eds.: B. M. Trost, I. Fleming), Pergamon Press,
Oxford, 1991, Chapter 3.2; d) S. Nishimura, Handbook
of Heterogeneous Catalytic Hydrogenation for Organic
Synthesis, Wiley-Interscience, New York, 2001; e) ꢂ.
Molnꢃr, A. Sꢃrkꢃny, M. Varga, J. Mol. Catal. A: Chemi-
cal 2001, 173, 185–221; f) A. M. Kluwer, C. J. Elsevier,
in: The Handbook of Homogeneous Hydrogenation,
Vol. 1, (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH,
Weinheim, 2007, pp 375–411.
[10] For transfer semihydrogenation of alkynes, see: P. Hau-
wert, G. Maestri, J. W. Sprengers, M. Catellani, C. J.
Elsevier, Angew. Chem. 2008, 120, 3267–3270; Angew.
Chem. Int. Ed. 2008, 47, 3223–3226.
[11] M. Sodeoka, M. Shibasaki, J. Org. Chem. 1985, 50,
1147–1149.
[2] Handbook of Metathesis, Vol.1–3, (Ed.: R. H. Grubbs),
Wiley-VCH, Weinheim, 2003.
[3] J. Hagen, Industrial Catalysis, 2nd edn., Wiley-VCH,
Weinheim, 2006.
[12] Reviews on nanoparticle catalysis: a) G. Schmid, Chem.
Rev. 1992, 92, 1709–1727; b) L. N. Lewis, Chem. Rev.
1993, 93, 2693–2730; c) N. Toshima, T. Yonezawa, New.
J. Chem. 1998, 1179–1201; d) A. Roucoux, J. Schulz, H.
Patin, Chem. Rev. 2002, 102, 3757–3778; e) D. Astruc,
[4] a) H. Lindlar, Helv. Chim. Acta 1952, 35, 446–450;
b) H. Lindlar, R. Dubuis, Org. Synth. Coll. Vol. 1973, 5,
880–882; c) J. Rajaram, A. P. S. Narula, H. P. S.
Chawla, S. Dev, Tetrahedron 1983, 39, 2315–2322;
d) J. J. Brunet, P. Caubere, J. Org. Chem. 1984, 49,
3148
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2009, 351, 3143 – 3149