COMMUNICATIONS
Chattopadhyay, J. Org. Chem. 1982, 47, 1727 ± 1731; b) J. An, D. F.
Wiemer, J. Org. Chem. 1996, 61, 8775 ± 8779; c) S. D. Bruner, H. S.
Radeke, J. A. Tallarico, M. L. Snapper, J. Org. Chem. 1995, 60, 1114,
1115; d) S. Poigny, M. Guyot, M. Samadi, J. Org. Chem. 1998, 63,
5890 ± 5894.
constitutional information. In recent years, the phenomenon
has been studied with various chemical model systems based
on oligonucleotides,[1] peptides,[2] and other synthetic supra-
molecular systems,[3] aiming to gain an improved understand-
ing of prebiotic replication.[4] A common problem of these
template-mediated catalytic systems, regardless of whether
they are autocatalytic or cross-catalytic, is product inhibition
leading to parabolic amplification. Recently, an exponential
amplification procedure based on oligonucleotides immobi-
lized on a solid support was reported by Luther et. al.[5] Here
we report a new scheme for stepwise replication that is based
on a Trögerꢁs base analogue and utilizes macrocyclization and
covalent templating.
Trögerꢁs base with its rigid V-shaped geometry has become
attractive in recent years in the general area of supramolec-
ular chemistry.[6] For the design of a novel replicating system
based on a Trögerꢁs base analogue, we realized that a thiol ±
disulfide exchange reaction[7] could be integrated with the
formation of Trögerꢁs base.[6b] Molecular modeling using the
PCMODEL[8] program supported the geometric feasibility of
the ªdimericº macrocyclic structure 4 (see Scheme 1). We
chose compound 1, which has two appended thiol groups at
the 2- and 8-methyl groups of Trögerꢁs base, as a template. It
occurred to us that reaction of 1 with 2 will produce 3 by a
thiol ± disulfide exchange reaction (Scheme 1). Intramolecu-
lar condensation of the two aniline units of 3 will produce 4.
Reductive cleavage of the disulfide linkages of 4 will generate
a replica of 1 along with the parent template.
[11] H.-W. Wanzlick, U. Jahnke, Chem. Ber. 1968, 101, 3744 ± 3752.
[12] J. B. P. Wijnberg, L. H. D. Jenniskens, G. A. Brunekreef, A. de Groot,
J. Org. Chem. 1990, 55, 941 ± 948.
[13] a) F. N. Tebbe, W. G. Parshall, G. S. Reddy, J. Am. Chem. Soc. 1978,
100, 3611 ± 3613; b) S. H. Pine, G. S. Shen, H. Hoang, Synthesis 1991,
165 ± 167.
[14] N. A. Petasis, E. I. Bzowej, J. Am. Chem. Soc. 1990, 112, 6392 ± 6394.
[15] L. Fitjer, U. Quadbeck, Synth. Commun. 1985, 15, 855 ± 864.
[16] H. S. Rodeke, C. A. Digits, S. D. Brunner, M. L. Snapper, J. Org.
Chem. 1997, 62, 2823 ± 2831.
[17] a) C. O. Snyder, H. Rapoport, J. Am. Chem. Soc. 1972, 94, 227 ± 231;
b) C. B. de Koning, R. G. F. Giles, L. S. Knight, M. L. Nisen, S. C.
Yorke, J. Chem. Soc. Perkin Trans 1 1988, 2477 ± 2483.
[18] Analytical data for 2: M.p. 13598C (hexene) [ref. [9]: m.p. 135.5 ±
13698C (hexene)]; IR (KBr): nÄ 3337, 1645, 1609, 1460, 1380, 1320,
1
1234, 1209, 1043 cm
;
1H NMR (500 MHz, CDCl3): d 7.48 (br.s,
1H), 5.85 (s, 1H), 5.12 (br.s, 1H), 3.84 (s, 3H), 2.63 (d, 1H, J
13.7 Hz), 2.49 (d, 1H, J 13.7 Hz), 2.06 ± 1.97 (m, 1H), 1.92 ± 1.83
(m, 1H), 1.63 (dt, 1H, J 12.7, 3.3 Hz), 1.54 (s, 3H), 1.47 ± 1.04 (m,
6H), 1.00 (s, 3H), 0.97 (d, 3H, J 6.1 Hz), 0.92 ± 0.88 (m, 1H), 0.84 (s,
3H); 13C NMR (125.8 MHz, CDCl3): d 182.4, 182.1, 161.8, 153.2,
144.0, 120.9, 117.6, 102.0, 56.8, 47.8, 43.1, 38.5, 37.8, 36.0, 32.3, 27.9, 27.0,
20.2, 19.8, 18.2, 17.7, 17.4; MS: (EI, 70 eV, 858 C): m/z: 358 [M ], 281,
236, 191, 168; HRMS (EI) calcd for C22H30O4 358.2144, found
358.2131; [a]2D0 62.4 (c 0.25, CHCl3) [ref.[9] [a]2D0 64.8 (c
1, CHCl3)].
[19] Analytical data for 1c: IR (KBr): nÄ 3417, 1679, 1650, 1597, 1556,
1
1391, 1209 cm
;
1H NMR (500 MHz, [D6]DMSO): d 7.16 (d, 1H,
J 7.3 Hz), 5.34 (s, 1H), 5.06 (s, 1H), 4.21 (m, 1H), 3.82 (m, 1H), 3.78
(m, 1H), 2.43 (d, 1H, J 13.5 Hz), 2.32 (d, 1H, J 13.5 Hz), 2.01 ±
1.89 (m, 3H), 1.54 (m, 1H), 1.47 (s, 3H), 1.39 ± 1.15 (m, 4H), 1.03 ± 0.98
(m, 2H), 0.93 (s, 3H), 0.89 (d, 3H, J 7.3), 0.77 (s, 3H); MS: ( FAB,
diethanolamine matrix): m/z: 432 [MH], [a]2D0 62 (c 0.13,
EtOH) [ref.[8] ([a]D20
738 (c 0.03, EtOH)].
[20] The direction of the specific rotation reported for nakijiquinone C
isolated from natural sources is indeed incorrect. Reexamination of
the original sample yielded a value of [a]2D0 1388 (c 0.1, EtOH):
Prof. Junꢁichi Kobayashi, Hokkaido University, Sapporo; personal
communication.
Stepwise Replication of a Trögerꢀs Base
Analogue**
Braja G. Bag and Günter von Kiedrowski*
Molecular replication lies in the heart of biological systems.
In its minimal representation, molecular replication is the
ability of a molecule to form a copy of itself with transfer of
Scheme 1. Stepwise replication of Trögerꢁs base analogue 1 by macro-
cyclization and covalent templating.
We have previously reported the synthesis of compound 1.[9]
Indirect evidence for the practicability of the replication
Scheme came from the fact that oxidation of 1 with iodine[10]
under high dilution conditions in THF afforded 4 as the major
product detectable by HPLC (Table 1). Treatment of a
solution of 1 in chloroform with 2 in the presence of p-
toluenesulfonic acid afforded 3 in quantitative yield. The
insoluble byproduct 4-thiopyridone was separated by filtra-
tion and the bis-amine 3 was directly used for the macro-
cyclization. Condensation of 3 with formalin in chloroform/
[*] Prof. Dr. G. von Kiedrowski, Dr. B. G. Bag
Lehrstuhl für Organische Chemie I ± Bioorganische Chemie
der Universität
Universitätsstrasse 150, D 44780 Bochum (Germany)
Fax: (49)234-32-14355
[**] This work was supported by the Deutsche Forschungsgemeinschaft
(SFB 452) and the Fonds der Chemischen Industrie. We thank Rolf
Breuckmann, Beate Materue and Klaus Körner for their technical
assistance.
Angew. Chem. Int. Ed. 1999, 38, No. 24
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3824-3713 $ 17.50+.50/0
3713