C. Laroche et al. / Tetrahedron Letters 44 (2003) 2485–2487
2487
References
cyclohexylmagnesium chloride led only to traces of
product 3, under the conditions described in Ref. 4.
Moreover, the bicyclo[4.1.0]heptane framework could not
be formed from the corresponding nitriles.
1. Salau¨n, J. Top. Curr. Chem. 2000, 207, 1–67.
2. Pirrung, M. C. Acc. Chem. Res. 1999, 32, 711–718.
3. See for example: (a) Abacavir: Daluge, S. M.; Martin, M.
T.; Sickles, B. R.; Livingston, D. A. Nucleosides Nucle-
otides 2000, 19, 297–327; (b) MIV-150: Ho¨gberg, M.;
Sahlberg, C.; Engelhardt, P.; Nore´en, R.; Kangasmetsa¨,
14. At this stage, other titanium complexes such as
ClTi(OiPr)3 and Cl2Ti(OiPr)2 were tried, but without
improving the yield of 3.
15. This is in contrast to the reaction employing esters or
amides. In the latter cases, the Grignard reagent is gener-
ally used in excess. See Refs. 8–12.
16. Several attempts to prepare cyclopropylamines inter-
moleculary from nitriles and alkenes (styrene, 1-octene)
via ligand exchange were unsuccessful.
8
J.; Johansson, N. G.; Oberg, B.; Vrang, L.; Zhang, H.;
Sahlberg, B.-L.; Unge, T.; Lo¨vgren, S.; Fridborg, K.;
Ba¨ckbro, K. J. Med. Chem. 1999, 42, 4150–4160; (c)
Trovafloxacine: Brighty, K. E.; Castaldi, M. J. Synlett
1996, 1097–1099; (d) Tranylcypromine: Fujita, T. J. Med.
Chem. 1973, 16, 923–930.
17. Typical procedure for the synthesis of cyclopropylamines:
To a solution of the nitrile (1 mmol) in Et2O (5 mL) were
added successively at room temperature Ti(OiPr)4 (0.33
mL, 1.1 mmol) and cyclohexylmagnesium chloride (1.1
mL, 2.2 mmol, 2 M in ether). After stirring for 0.5 h,
BF3·OEt2 (0.25 mL, 2 mmol) was added at once. Stirring
was continued over a period of 30 min. A solution of
10% NaOH (ca. 1 mL) was added and the mixture was
extracted with ether. The combined ether layers were
dried over anhydrous sodium sulfate, filtered and concen-
trated under reduced pressure. The resulting crude mate-
rial was purified by flash chromatography on silica gel.
18. Selected data for 7 and 13: 3-benzyl-5-methyl-3-azabicy-
clo[3.1.0]hept-1-ylamine (7): 1H NMR (CDCl3, 250 MHz)
l: 0.25 (m, 1H), 1.10 (m, 4H), 1.50 (s, 2H), 2.20 (d,
J=8.4 Hz, 1H), 2.25 (d, J=8.4 Hz, 1H), 2.90 (d, J=8.3
Hz, 1H), 3.05 (d, J=8.3 Hz, 1H), 3.55 (s, 2H), 7.25–7.40
(m, 5H); 13C NMR (CDCl3, 250 MHz) l: 14.2, 20.6, 26.1,
4. Bertus, P.; Szymoniak, J. Chem. Commun. 2001, 1792–
1793.
5. Bertus, P.; Szymoniak, J. J. Org. Chem. 2002, 67, 3965–
3968.
6. For reviews, see: (a) de Meijere, A.; Kozhushkov, S. I.;
Savchenko, A. I. In Titanium and Zirconium in Organic
Synthesis; Marek, I.; Ed.; Wiley-VCH: Weinheim, 2002;
pp. 390–434; (b) Kulinkovich, O. G.; de Meijere, A.
Chem. Rev. 2000, 100, 2789–2834.
7. The ligand exchange methodology was first described by
Kulinkovich et al., see: Kulinkovich, O. G.; Savchenko,
A. I.; Sviridov, S. V.; Vasilevski, D. A. Mendeleev Com-
mun. 1993, 230–231.
8. (a) Lee, J.; Kang, C. H.; Kim, H.; Cha, J. K. J. Am.
Chem. Soc. 1996, 118, 291–292; (b) U, J. S.; Lee, J.; Cha,
J. K. Tetrahedron Lett. 1997, 38, 5233–5236.
9. (a) Kasatkin, A.; Sato, F. Tetrahedron Lett. 1995, 36,
6079–6082; (b) Kasatkin, A.; Kobayashi, K.; Okamoto,
S.; Sato, F. Tetrahedron Lett. 1996, 37, 1849–1852; (c)
Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato, F. J.
Am. Chem. Soc. 1997, 119, 6984–6990.
10. Lee, J.; Cha, J. K. J. Org. Chem. 1997, 62, 1584–1585.
11. Cao, B.; Xiao, D.; Joullie´, M. M. Org. Lett. 1999, 1,
1799–1801.
12. Gensini, M.; Kozhushkov, S. I.; Yufit, D.; Howard, J. A.
K.; Es-Sayed, M.; de Meijere, A. Eur. J. Org. Chem.
2002, 2499–2507.
43.0, 59.2, 60.6, 68.8, 126.7, 128.0, 128.5, 139.1; MS (EI)
+
m/z (%): 202 (M , 13), 147 (2), 120 (4), 111 (14), 91
(100). 3-Benzyl-3-azabicyclo[4.1.0]hept-1-ylamine (13):
1H NMR (CDCl3, 250 MHz) l: 0.65 (m, 2H), 0.95 (m,
1H), 1.65 (m, 3H), 1.95 (dt, J=17.5 Hz, J=5.2 Hz, 2H),
2.20 (d, J=10.4 Hz, 1H), 2.45 (m, 1H), 2.95 (d, J=10.4
Hz, 1H), 3.45 (s, 2H), 7.25–7.35 (m, 5H); 13C NMR
(CDCl3, 250 MHz) l: 18.4, 19.3, 24.7, 34.4, 50.9, 61.2,
62.7, 126.8, 128.1, 128.7, 138.8; MS (EI) m/z (%): 202
+
(M , 10), 187 (10), 161 (11), 132 (15), 120 (25), 91 (100).
13. In the paper cited in Ref. 12, the reaction of 1 with