C O M M U N I C A T I O N S
Scheme 2 a
nation with NBS delivered (+)-dibromophakellstatin (ent-1a). This
material exhibited spectroscopic and physical properties identical
to those of the natural product with the exception of optical rotation
(syn. [R]25 +68.7°; nat. [R]25 -70.4°).
D
D
In summary, key steps in the first enantioselective synthesis of
(+)-phakellstatin and (+)-dibromophakellstatin included desym-
metrization of cyclo (Pro, Pro) via a diastereoselective acylation,
an intramolecular Mitsunobu reaction to introduce the C6 aminal,
and a tandem Hofmann rearrangement/cyclization to simultaneously
introduce the C10 quaternary aminal center and deliver the cyclic
urea. The synthesis also demonstrates the unusual stability of pyrrolo
aminals, for example, 23-24. Importantly, this strategy has the
potential for producing phakellstatin derivatives, derived from (R,
R)-cyclo (Pro, Pro), necessary for biological studies. The total
synthesis also provides a phakellin annulation method applicable
to the synthesis of palau’amine. Studies toward these goals will be
reported in due course.
a (a) Reference 8; (b) KHMDS, THF, -78 °C; PhSeBr (73%); (c)
DMDO, CH2Cl2, -78 f 0 °C (93%); (d) SeO2, dioxane, reflux (65%); (e)
NaBH4, MeOH, -40 °C (88%); (f) Ac2O, py., CH2Cl2 (66%); (g) H2, 10%
Pd/C, EtOAc; (h) TEA, DPPA, PhCH3, 4 Å MS, 85 °C; BnNH2, 23 °C
(50%, two steps); (i) NH3, MeOH, (86%); (j) KOt-Bu, t-BuOH, 25 °C
(99%).
Acknowledgment. We thank the NIH (GM 52964-06) and
Pfizer for support of these investigations. D.R. is an Alfred P. Sloan
Fellow and a Camille-Henry Dreyfus Teacher-Scholar. We thank
Dr. George Pettit (Arizona Cancer Res. Inst.) and Dr. David Horne
(Oregon State) for samples and spectral data of dibromophakell-
statin, respectively. We thank Dr. Joe Reibenspies for X-ray
structure determination using instruments obtained with funds from
the NSF (CHE-9807975). The NSF (CHE-0077917) provided funds
for purchase of NMR instrumentation.
Scheme 3 a
Supporting Information Available: Selected experimental pro-
cedures and characterization data (including 1H and 13C NMR spectra)
for compounds 10, 11, 18, 20, 21, 24, (+)-1b, (+)-1a, and comparison
spectra with natural (-)-1a and derived (-)-1b (PDF). This material
a (a) KOt-Bu, t-BuOH; (b) Ac2O, py., CH2Cl2 (58%, two steps); (c) H2,
10% Pd/C, EtOAc/EtOH (1:1); (d) (i) (COCl)2, DMFcat, CH2Cl2; (ii)
CbzNHOH, DMAP (77%, two steps); (e) NH3, MeOH, 0 °C (90%); (f)
DIAD, PPh3, THF, reflux; (g) NH3, MeOH, 0 °C; (h) TiCl3, KOAc, THF/
H2O (1:1), 23 °C (53%, three steps); (i) PhI(O2CCF3)2, py., CH3CN; (j)
H2, 10% Pd/C, MeOH (50%, two steps); (k) NBS (2.0 equiv), THF (69%).
References
(1) Pettit, G. R.; McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis, J.-C.;
Schmidt, J. M.; Tackett, L. P.; Boyd, M. R. J. Nat. Prod. 1997, 60, 180.
(2) Burkholder, P. R.; Sharma, G. M. Lloydia 1969, 32, 466.
(3) Braekman, J.-C.; Daloze, D.; Stoller, C.; Van Soest, R. W. M. Biochem.
Syst. Ecol. 1992, 20, 417.
(4) Al Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237.
(5) Foley, L. H.; Bu¨chi, G. J. Am. Chem. Soc. 1982, 104, 1776.
(6) (a) Wiese, K. J.; Yakushijin, K.; Horne, D. A. Tetrahedron Lett. 2002,
43, 5135. (b) Jacquot, D. E. N.; Hoffmann, H.; Polborn, K.; Lindel, T.
Tetrahedron Lett. 2002, 43, 3699.
(7) Dilley, A. S.; Romo, D. Org. Lett. 2001, 3, 1535.
(8) Poullennec, K. G.; Kelly, A. T.; Romo, D. Org. Lett. 2002, 4, 2645.
(9) Jacquot, D. E. N.; Hoffmann, H.; Polborn, K.; Lindel, T. Tetrahedron
Lett. 2002, 43, 3699.
(10) Evans, D. A.; Borg, G.; Scheidt, K. A. Angew. Chem., Int. Ed. 2002, 41,
3188.
(11) Ishibashi, N.; Kouge, K.; Shinoda, I.; Kanehisa, H.; Okai, H. Agric. Biol.
Chem. 1988, 52, 819.
(12) (a) Walker, D.; Hiebert, J. D. Chem. ReV. 1967, 67, 153-195. (b) Kodato,
S.-I.; Nakagawa, M.; Hongu, M.; Kawate, T.; Hino, T. Tetrahedron 1988,
44, 359.
(13) Bernstein, S.; Littell, R. J. Am. Chem. Soc. 1960, 82, 1235-1240.
(14) Lee, S. D.; Brook, M. A.; Chan, T. H. Tetrahedron Lett. 1983, 24, 1569.
(15) Chemical shift analysis indicated shielding effects due to anisotropy of
the phenyl ring of DKP 9. For related studies, see: Rajappa, S.; Natekar,
M. V. AdV. Heterocycl. Chem. 1993, 57, 187.
(16) Shioiri, T.; Ninomiya, K.; Yamada, S.-I. J. Am. Chem. Soc. 1972, 94,
6203.
(17) Hughes, D. L. Org. Prep. Proced. Int. 1996, 28, 127.
(18) Mattingly, P. G.; Miller, M. J. J. Org. Chem. 1980, 45, 410.
(19) Pallai, P.; Goodman, M. J. Chem. Soc., Chem. Commun. 1982, 5, 280.
set of conditions, exposure to KOt-Bu following attempted alcohol
activation did not induce cyclization to the cyclic urea, but led
instead to epimerization at C6 in quantitative yield, suggesting
thermodynamic preference for trans-carbinolamine 16.
With these epimerization conditions in hand and the information
suggesting the instability of the aminal at C10, we explored a
different strategy to complete the synthesis of phakellstatin which
entailed introduction of the more stable C6 aminal followed by
introduction of the more labile C10 aminal. Toward this goal,
epimerization to carbinolamine 17 and subsequent acylation gave
trans-acetoxyester 18 (Scheme 3). The benzyl group was removed,
and acid 19 was subsequently coupled with benzyl N-hydroxy-
carbamate to give the hydroxamate 20. Following aminolysis and
exposure of the N-hydroxy ester to Mitsunobu conditions (DIAD,
PPh3),17 tetracyclic intermediate 22 was formed but was not readily
isolated due to instability. Hence, it was immediately subjected to
18
aminolysis and then N-O bond cleavage with TiCl3 to deliver
â-amino amide 24. Pleasingly, amide 24 smoothly underwent
Hofmann rearrangement using PhI(O2CCF3)219 and in situ cycliza-
tion giving Cbz-(+)-phakellstatin (26), which was hydrogenolyzed
directly to deliver (+)-phakellstatin (ent-1b). Subsequent bromi-
JA034575I
9
J. AM. CHEM. SOC. VOL. 125, NO. 21, 2003 6345