Journal of the American Chemical Society
Page 6 of 8
14
Simple Arenes. Angew. Chem. Int. Ed. 2012, 51, 5701-5705. c)
Dong, Z.; Wang, J.; Dong, G. Simple Amine-Directed Meta-
Selective C–H Arylation via Pd/Norbornene Catalysis J. Am. Chem.
Soc. 2015, 137, 5887-5890.
Liang, Q.; Yang, C.; Meng, F.-F.; Jiang, B.; Xu, Y.-H.; Loh, T.-P.
Chelation versus Non-Chelation Control in the Stereoselective
Alkenyl sp2 C−H Bond Functionalization Reaction. Angew. Chem.
Int. Ed. 2017, 56, 5091-5095. d) Liu, M.; Yang, P.; Karunananda, M.
K.; Wang, Y.; Liu, P.; Engle, K. M. C(alkenyl)–H Activation via Six-
Membered Palladacycles: Catalytic 1,3-Diene Synthesis. J. Am.
Chem. Soc. 2018, 140, 5805-5813. e) Luo, Y.-C.; Yang, C.; Qiu, S.-Q.;
Liang, Q.-J.; Xu, Y.-H.; Loh, T.-P. Palladium(II)-Catalyzed
Stereospecific Alkenyl C–H Bond Alkylation of Allylamines with
Alkyl Iodides. ACS Catal. 2019, 9, 4271-4276.
1
2
3
4
5
6
7
8
15
a) Catellani, M.; Chiusoli, G. P. Competitive Processes in
Palladium-Catalyzed C−C Bond Formation. J. Organomet. Chem.
1982, 233, C21-C24. b) Khanna, A.; Premachandra, I. D. U. A.; Sung,
P. D.; Van Vranken, D. L. Palladium-Catalyzed Catellani
Aminocyclopropanation Reactions with Vinyl Halides. Org. Lett.
2013, 15, 3158-3161.
16
For alkenyl Catellani-type reactions: a) Wang, J.; Dong, Z.;
Yang, C.; Dong, G. Modular and Regioselective Synthesis of All-
Carbon Tetrasubstituted Olefins Enabled by an Alkenyl Catellani
Reaction. Nat. Chem. 2019, 11, 1106-1112. b) Yamamoto, Y.;
Murayama, T.; Jiang, J.; Yasui, T.; Shibuya, M. The Vinylogous
Catellani Reaction: a Combined Computational and Experimental
Study. Chem. Sci. 2018, 9, 1191−1199.
9
8 For selected examples, see: a) Besset, T.; Kuhl, N.; Patureau, F.
W.; Glorius, F. RhIII-Catalyzed Oxidative Olefination of Vinylic C-H
Bonds: Efficient and Selective Access to Di-unsaturated α-Amino
Acid Derivatives and Other Linear 1,3-Butadienes. Chem. Eur. J.
2011, 17, 7167-7171. b) Wang, H.; Beiring, B.; Yu, D.; Collins, K. D.;
Glorius, F. [3]Dendralene Synthesis: Rhodium(III)-Catalyzed
Alkenyl C-H Activation and Coupling Reaction with Allenyl
Carbinol Carbonate. Angew. Chem. Int. Ed. 2013, 52, 12430-12434.
c) Boultadakis-Arapinis, M.; Hopkinson, M. N. Glorius, F. Using
Rh(III)-Catalyzed C–H Activation as a Tool for the Selective
Functionalization of Ketone-Containing Molecules. Org. Lett. 2014,
16, 1630-1633. d) Lei, Z.; Ye, J.; Sun, J.; Shi, Z. Direct Alkenyl C–H
Functionalization of Cyclic Enamines with Carboxylic Acids via Rh
Catalysis Assisted by Hydrogen Bonding. Org. Chem. Front. 2014,
1, 634-638.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
17
Xu, Y.; Dong, G. sp3 C–H Activation via exo-type Directing
Groups Chem. Sci. 2018, 9, 1424-1432.
18
For earlier works, see: a) Desai, L. V.; Stowers, K. J.; Sanford,
M. S. Insights into Directing Group Ability in Palladium-Catalyzed
C−H Bond Functionalization. J. Am. Chem. Soc. 2008, 130, 13285-
13293. b) Ren, Z.; Mo, F.; Dong, G. Catalytic Functionalization of
Unactivated sp3 C–H Bonds via exo-Directing Groups: Synthesis of
Chemically Differentiated 1,2-Diols. J. Am. Chem. Soc. 2012, 134,
16991-16994.
19
For the first use of substituted 2-pyridone as the concerted
9
For selected examples, see: a) Zhang, Y. J. Skucas, E.; Krische,
metalation deprotonation (CMD) promotor, see: Wang, P.; Farmer,
M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.;
Wisniewski, S. R.; Eastgate, M. D.; Yu, J.-Q. Ligand-Promoted Meta-
C–H Arylation of Anilines, Phenols, and Heterocycles. J. Am. Chem.
Soc. 2016, 138, 9269-9276.
M. J. Direct Prenylation of Aromatic and α,β-Unsaturated
Carboxamides
via
Iridium-Catalyzed
C−H
Oxidative
Addition−Allene Insertion. Org. Lett. 2009, 11, 4248-4250. b) Ye,
K.; He, H.; Liu, W.-B.; Dai, L; Helmchen, G.; You, S.-L. Iridium-
Catalyzed Allylic Vinylation and Asymmetric Allylic Amination
Reactions with o-Aminostyrenes. J. Am. Chem. Soc. 2011, 133,
19006-19014.
20
a) For the first use of a substituted NBE in the Pd/NBE
catalysis, see: Dong, Z.; Wang, J.; Ren, Z.; Dong, G. Ortho C−H
Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.
Angew. Chem. Int. Ed. 2015, 54, 12664-12668. b) For the first use
of a substituted NBE in the C−H activation-initiated Pd/NBE
catalysis, see: Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q.
Ligand-Enabled Meta-C–H Alkylation and Arylation Using a
Modified Norbornene J. Am. Chem. Soc. 2015, 137, 11574-11577.
21 Liu, Z.-S.; Qian, G.; Gao, Q.; Wang, P.; Cheng, H.-G.; Wei, Q.; Liu,
Q.; Zhou, Q. Palladium/Norbornene Cooperative Catalysis to Access
Tetrahydronaphthalenes and Indanes with a Quaternary Center.
ACS Catal. 2018, 8, 4783-4788.
10 For selected examples, see: a) Ilies, L.; Matsubara, T.; Ichikawa,
S.; Asako, S.; Nakamura, E. Iron-Catalyzed Directed Alkylation of
Aromatic and Olefinic Carboxamides with Primary and Secondary
Alkyl Tosylates, Mesylates, and Halides. J. Am. Chem. Soc. 2014, 136,
13126-13129. b) Monks, B. M.; Fruchey, E. R. Cook, S. P.
Iron-Catalyzed C(sp2)-H Alkylation of Carboxamides with Primary
Electrophiles. Angew. Chem. Int. Ed. 2014, 53, 11065-11069. c)
Ilies, L.; Ichikawa, S.; Matsubara, T.; Nakamura, E. Iron-Catalyzed
Directed Alkylation of Alkenes and Arenes with Alkylzinc Halides.
Adv. Synth. Catal. 2015, 357, 2175-2179. d) Cera, G.; Haven, T.;
22
a) Motti, E.; Della Ca’, N.; Deledda, S.; Fava, E.; Panciroli, F.;
Ackermann,
L.
Expedient
Iron-Catalyzed
C−H
Catellani, M. Palladium-Catalyzed Unsymmetrical Aryl Couplings in
Sequence Leading to O-Teraryls: Dramatic Olefin Effect on
Selectivity. Chem. Commun. 2010, 46, 4291-4293. b) Martins, A.;
Candito, D. A.; Lautens, M. Palladium-Catalyzed Reductive ortho-
Arylation: Evidence for the Decomposition of 1,2-
Dimethoxyethane and Subsequent Arylpalladium (II) Reduction.
Org. Lett. 2010, 12, 5186-5188.
Allylation/Alkylation by Triazole Assistance with Ample Scope.
Angew. Chem. Int. Ed. 2016, 55, 1484-1488.
11 For selected examples, see: a) Gensch, T.; Vasquez-Cespedes,
S.; Yu, D.-G. Glorius, F. Org. Lett. 2015, 17, 3714-3717. b) Wang, H.;
Zhang, S.; Wang, Z.; He, M.; Xu, K. Cobalt-Catalyzed Monoselective
Ortho-C–H
Functionalization
of
Carboxamides
with
Organoaluminum Reagent. Org. Lett. 2016, 18, 5628-5631. c) Li, T.;
Shen, C.; Sun, Y.; Zhang, J.; Xiang, P.; Lu, X.; Zhong, G. Cobalt-
Catalyzed Olefinic C–H Alkenylation/Alkylation Switched by
Carbonyl Groups. Org. Lett. 2019, 19, 7772-7777.
23 For example, p-nitrophenyl iodide gave the desired product
albeit in 8% yield.
O
DG1
12
For selected reviews, see: a) Ye, J.; Lautens, M. Palladium-
Catalysed Norbornene-Mediated C–H Functionalization of Arenes.
Nat. Chem. 2015, 7, 863−870. b) Della Ca’, N.; Fontana, M.; Motti,
E.; Catellani, M. Pd/Norbornene: A Winning Combination for
Selective Aromatic Functionalization via C–H Bond Activation. Acc.
Chem. Res. 2016, 49, 1389−1400. c) Wang, J.; Dong, G.
Palladium/Norbornene Cooperative Catalysis. Chem. Rev. 2019,
119, 7478-7528. d) Cheng, H.-G.; Chen, S.; Chen, R.; Zhou, Q.
Palladium (II)-Initiated Catellani-Type Reactions. Angew. Chem.
Int. Ed. 2019, 58, 5832-5844.
8%
NO2
24
Romine, A. M.; Yang, K. S.; Karunannanda, M. K.; Chen, J. S.;
Engle, K. M. Synthetic and Mechanistic Studies of a Versatile
Heteroaryl Thioether Directing Group for Pd(II) Catalysis. ACS
Catal. 2019, 9, 7626-7640.
25
A typical side product was observed in this reaction, which
supports a Catellani pathway.
Ph
13 Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K. M.;
Yu, J.-Q. Ligand-Enabled meta-C–H Activation Using a Transient
Mediator. Nature, 2015, 519, 334-338.
O
N
O
DG1
O
R
Ph
ACS Paragon Plus Environment