Page 9 of 9
Journal of the American Chemical Society
2. Jacobs, M. M.; Mallay, T. F.; Tickner, J. A.; Edwards, S. Alternatives
18. Krishnakumar, V.; Chatterjee, B.; Gunanathan, C. Ruthenium-cata-
assessment frameworks research needs for the informed substitution
of hazardous chemicals. Environ. Health Perspect. 2016, 124, 265-280.
3. Trost, B. M. The atom economy – a search for synthetic efficiency. Sci-
ence 1991, 254, 1471-1477.
lyzed urea synthesis by N-H activation of amines. Inorg. Chem. 2017
56, 7278-7284.
,
1
2
3
4
19. Lane, E. M.; Hazari, N.; Bernskoetter, W. H. Iron-catalyzed urea syn-
thesis: dehydrogenative coupling of methanol and amines. Chem. Sci.
2018, 9, 4003-4008.
4. Wender, P. A.; Verma V. A.; Paxton, T. J.; Pillow T. H. Function-ori-
5
6
7
8
ented synthesis, step economy and drug design. Acc. Chem. Res. 2008
41, 40-49.
5. Newhouse, T.; Baran, P. S.; Hoffmann, R. W. The economies of syn-
thesis. Chem. Soc. Rev. 2009, 38, 3010-3021.
,
20. Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D. N-H
activation of amines and ammonia by Ru via metal-ligand cooperation.
J. Am. Chem. Soc. 2010, 132, 8542-8543.
21. Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein,
D. Electron-rich, bulky ruthenium PNP-type complexes. Acceptorless
catalytic alcohol dehydrogenation. Organometallics 2004, 23, 4026-
4033.
22. Montag, M.; Zhang, J.; Milstein, D. Aldehyde binding through reversi-
ble C-C coupling with the pincer ligand upon alcohol dehydrogenation
by a PNP-ruthenium catalyst. J. Am. Chem. Soc. 2012, 134, 10325-
10328.
23. Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides
from alcohols and amines from alcohols and amines with liberation of
H2. Science 2007, 317, 790-792.
24. Li., L.; Herzon, S. B. Temporal separation of catalytic activities allows
anti-Markovnikov reductive functionalization of terminal alkynes. Nat.
Chem. 2014, 6, 22-27.
25. Konnert, L.; Lannaty, F.; Martinez, J.; Colacino, E. Recent advances in
the synthesis of hydantoins: the state of the art of a valuable scaffold.
Chem. Rev. 2017, 117, 13757-13809.
6. Worthy, W. Methyl isocyanate: the chemistry of a hazard. Chem. Eng.
9
News 1985, 63, 27-33.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
7. Broughton, E. The Bhopal disaster and its aftermath: a review. Envi-
ron. Health 2005, 4, 1-6.
8. Six, C.; Richer, F. “Isocyanates, Organic” in Ulmann’s Encyclopedia of
Industrial Chemistry (Wiley-VCH, Weinheim, 2012), vol. 20, pp. 63-
82.
9. Sheldon, R. A.; Arends, I. W. C. E.; Hanefeld, U. Green chemistry and
catalysis (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).
10. Khusnutdinova, J. R.; Milstein, D. Metal-ligand cooperation. Angew.
Chem. Int. Ed. 2015, 54, 12236-12273.
11. Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a substrate-ac-
tivating strategy in homogeneous transition-metal catalysis. Chem.
Rev. 2010, 110, 681-703.
12. Gunanathan, C.; Milstein, D. Applications of acceptorless dehydro-
genation and related transformations in chemical synthesis. Science
2013, 341, 249-262.
26. Baumann, M.; Baxendale, I. R. An overview of the synthetic routes to
the best-selling drugs containing 6-membered heterocycles. Beilstein
J. Org. Chem. 2013, 9, 2265-2319.
13. Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische,
M. J. Metal-catalyzed reductive coupling of olefin-derived nucleo-
philes: reinventing carbonyl addition. Science 2016, 354, 300-306.
14. van der Vlugt, J. I.; Reek, J. N. H. Neutral Tridentate PNP Ligands and
Their Hybrid Analogues: Versatile Non–Innocent Scaffolds for Ho-
mogeneous Catalysis. Angew. Chem., Int. Ed. 2009, 48, 8832–8846.
15. Kotachi, S.; Tsuji, Y.; Kondo, T.; Watanabe, Y. Ruthenium catalyzed
N,N’-diarylurea synthesis from N-aryl substituted formamides and
aminoarenes. J. Chem. Soc., Chem. Commun. 1990, 549-550.
16. Kotachi, S.; Kondo, T.; Watanabe, Y. Ruthenium complex-catalyzed
synthesis of carbamates by dehydrogenative reaction of formamides
with alcohols. Catal. Lett. 1993, 19, 339-343.
27. The barrier height for hydrogen release drops from 36 to 33.8 kcal.mol-
1
upon addition of a bridging water molecule. Importantly, the water
trimer was used as the water source, with one molecule facilitating the
H2-release, leaving a residual water dimer.
28. Additional H-bonding with water or formamide is likely to reduce the
barrier height further: see Ch’ng, L. C.; Samanta, A. K.; Czako, G.;
Bowman, J. M.; Reisler, H. Experimental and theoretical investigations
of energy transfer and hydrogen-bond breaking in the water dimer J.
Am. Chem. Soc. 2012, 134, 15430-15435.
29. Gunanathan, C.; Milstein, D. Metal-ligand cooperation by aromatiza-
tion-dearomatization: a new paradigm in bond activation and green ca-
talysis. Acc. Chem. Res. 2011, 44, 588-602.
17. Kim, S. H.; Hong, S. H. Ruthenium-catalyzed urea synthesis using
methanol as the C1 source. Org. Lett. 2016, 18, 212-215 (2016).
ACS Paragon Plus Environment