Published on Web 02/04/2004
Equilibrium Thermodynamic Studies in Water: Reactions of
Dihydrogen with Rhodium(III) Porphyrins Relevant to Rh-Rh,
Rh-H, and Rh-OH Bond Energetics
Xuefeng Fu and Bradford B. Wayland*
Contribution from the Department of Chemistry, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104-6323
Received October 24, 2003; E-mail: wayland@sas.upenn.edu
Abstract: Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes
react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium
hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this
system establish the quantitative relationships that define the distribution of species in aqueous solution
as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five
equilibrium constants along with dissociation energies of D2O and dihydrogen in water. The hydride complex
([(TSPP)Rh-D(D2O)]-4) is a weak acid (Ka(298 K) ) (8.0 ( 0.5) × 10-8). Equilibrium constants and free
energy changes for a series of reactions that could not be directly determined including homolysis reactions
of the RhII-RhII dimer with water (D2O) and dihydrogen (D2) are derived from the directly measured equilibria.
The rhodium hydride (Rh-D)aq and rhodium hydroxide (Rh-OD)aq bond dissociation free energies for
[(TSPP)Rh-D(D2O)]-4 and [(TSPP)Rh-OD(D2O)]-4 in water are nearly equal (Rh-D ) 60 ( 3 kcal mol-1
,
Rh-OD ) 62 ( 3 kcal mol-1). Free energy changes in aqueous media are reported for reactions that
substitute hydroxide (OD-) (-11.9 ( 0.1 kcal mol-1), hydride (D-) (-54.9 kcal mol-1), and (TSPP)RhI:
(-7.3 ( 0.1 kcal mol-1) for a water in [(TSPP)RhIII(D2O)2]-3 and for the rhodium hydride [(TSPP)Rh-
D(D2O)]-4 to dissociate to produce a proton (9.7 ( 0.1 kcal mol-1), a hydrogen atom (∼60 ( 3 kcal mol-1),
and a hydride (D-) (54.9 kcal mol-1) in water.
Introduction
evaluating the scope of organometallic reactions and thermo-
dynamic parameters for rhodium porphyrin species in water.6
Rhodium porphyrins accomplish a remarkable array of
organometallic substrate reactions in both organic1-5 and
aqueous media.6 Reactions of substrates such as H2, CH4, CO,
and aldehydes with rhodium porphyrins that achieve observable
equilibria in benzene provide one of the more reliable and
extensive sets of organo-transition metal bond dissociation
enthalpies (BDE) in organic media.7,8 Current interest in
converting organometallic processes from organic to aqueous
media9-11 has stimulated us to direct our attention toward
Interpretation of thermodynamic measurements in water is
complicated by solvation energies,12,13 but aqueous media have
the advantageous property that the equilibrium distribution of
species can often be tuned by changing the hydrogen ion
concentration which provides a strategy for evaluating equilib-
rium constants that are either too large or too small for direct
measurement. This Article describes a set of simultaneous
equilibria that result from reactions of dihydrogen (H2/D2) with
rhodium(III) porphyrin aquo and hydroxo complexes in water
that form rhodium hydride, rhodium(I), and rhodium(II) com-
(1) (a) Cui, W.; Zhang, X. P.; Wayland, B. B. J. Am. Chem. Soc. 2003, 125,
4994. (b) Zhang, X.-X.; Wayland, B. B. J. Am. Chem. Soc. 1994, 116,
7897. (c) Zhang, X.-X.; Park, G. F.; Wayland, B. B. J. Am. Chem. Soc.
1997, 119, 7938. (d)Wayland, B. B.; Sherry, A. E.; Bunn, A. G. J. Am.
Chem. Soc. 1993, 115, 7675. (e) Bunn, A. G.; Wayland, B. B. J. Am. Chem.
Soc. 1992, 114, 6917. (f) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc.
1990, 112, 1259.
(2) (a) Aoyama, Y.; Fujisawa, T.; Toi, H.; Ogoshi, H. J. Am. Chem. Soc. 1986,
108, 943. (b) Aoyama, Y.; Yamagishi, A.; Tanaka, Y.; Toi, H.; Ogoshi, H.
J. Am. Chem. Soc. 1987, 109, 4735.
(9) (a) Cornils, B.; Kuntz, E. G. In Aqueous-phase Organometallic Catalysis,
Concept and Application; Cornils, B., Herrmann, A. W., Eds.; Wiley-
VCH: New York, 1998; Chapter 6. (b) Lucey, D. W.; Helfer, D. S.;
Atwood, J. D. Organometallics 2003, 22, 826. (c) Lucey, D. W.; Atwood,
J. D. Organometallics 2002, 21, 2481.
(10) (a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998,
37, 2181. (b) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
1996, 118, 5961. (c) Lynn, D. M.; Grubbs, R. H. J. Am. Chem. Soc. 2001,
123, 3187. (d) Lynn, D. M.; Mohr, B.; Grubbs, R. H.; Henling, L. M.;
Day, M. W. J. Am. Chem. Soc. 2000, 122, 6601.
(3) (a) Collman, J. P.; Boulatov, R. Inorg. Chem. 2001, 40, 2461. (b) Collman,
J. P.; Boulatov, R. Inorg. Chem. 2001, 40, 560. (c) Collman, J. P.; Boulatov,
R. J. Am. Chem. Soc. 2000, 122, 11812.
(4) (a) Nelson, A. P.; DiMagno, S. G. J. Am. Chem. Soc. 2000, 122, 8569. (b)
Sun, H.; Xue, F.; Nelson, A. P.; Redepenning, J.; DiMagno, S. G. Inorg.
Chem. 2003, 42, 4507.
(5) (a) Mak, K. W.; Chan, K. S. J. Am. Chem. Soc. 1998, 120, 9686. (b) Mak,
K. W.; Yeung, S. K.; Chan, K. S. Organometallics 2002, 21, 2362.
(6) Fu, X.; Basickes, L.; Wayland, B. B. Chem. Commun. 2003, 520.
(7) Wayland, B. B. Polyhedron 1988, 7, 1545.
(11) (a) Joo, F. Acc. Chem. Res. 2002, 35, 738. (b) Kovacs, J.; Todd, T. D.;
Reibenspies, J. H.; Joo, F.; Darensbourg, D. J. Organometallics 2000, 19,
3963. (c) Joo, F.; Kovacs, J.; Benyei, A. C.; Nadasdi, L.; Laurenczy, G.
Chem.-Eur. J. 2001, 7, 193.
(12) (a) Cramer, C. J.; Truhlar, D. G. Chem. ReV. 1999, 99, 2161. (b) Abraham,
M. H.; Whiting, G. S.; Fuchs, R.; Chambers, E. J. J. Chem. Soc., Perkin
Trans. 1990, 2, 291.
(8) Wayland, B. B. In Energetics of Organometallic Species; Simo˜es, J. A.
M., Ed.; NATO Advanced Study Institute C; Kluwer Academic Publish-
ers: Dordrecht, The Netherlands, 1992; Vol. 367, pp 69-74.
(13) (a) Ben-Naim, A. J. Chem. Phys. 1989, 90, 7412. (b) Ben-Naim, A.; Mazo,
R. J. Phys. Chem. B 1997, 101, 11221. (c) Kanabus-Kaminska, J. M.;
Gilbert, B. C.; Griller, D. J. Am. Chem. Soc. 1989, 111, 3311.
9
10.1021/ja039218m CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 2623-2631
2623