incorporation of fluorine or fluorine-containing groups into
an organic molecule may lead to improvements in pharma-
cological properties.8 Although synthesis of various substi-
tuted pyridines has been widely covered in the literature and
inspired significantly different strategies,1c,9 methods for the
fluorine-containing substrates are rare,10 and novel methods
for poly-substituted pyridines are still desired. Herein we
report a mild and efficient cascade procedure for chemose-
lective conversion of alkynylimines into the corresponding
substituted pyridines.
Initial experiments were carried out using 3 equiv of
benzylamine 2a with 2.5 equiv of Cs2CO3 in CH3CN at 80
°C. The desired 3-fluoropyridine product 3a was obtained
in 45% yield (Table 1, entry 1), which was confirmed by
crystal diffraction (Figure 1).16 Then other solvents were
The C-F bond is generally regarded as the strongest bond
in organic molecules, so its cleavage has become a current
subject of active investigation, as it provides us an op-
portunity to synthesize nonfluorinated products and partially
fluorinated compounds, which are otherwise inaccessible.11
It has been shown that the anionically activated trifluoro-
methyl group has great utility in the synthesis fluorine-
containing compounds,12 as it is easier to introduce a CF3
group into a molecule then other fluorinated groups. The
C-F bond breaking does rather easily occur when a CF3
group is attached to a π-electron system because of electron
pair acceptance into the π-system, and subsequent extrusion
of a fluoride ion provides the driving force.13 The formed
intermediary gem-difluorovinyl can react with various nu-
cleophiles14 or react with electrophiles when it is attached
to an anion,15 leading to various difluoromethylene building
blocks. Our strategy for the construction of diversely
substituted pyridine derivatives is based on this cascade C-F
cleavage/nucleophilic addition protocol.
Figure 1. X-ray structure of 3a and 5a.
evaluated. Comparing with toluene, DMF, dioxane, and
MeOH, the yield improved considerably when DME (1,2-
(8) (a) Yamazaki, T.; Taguchi, T.; Ojima; I., In Fluorine in Medicinal
Chemistry and Chemical Biology; Ojima, I., Eds.; Wiley-Blackwell:
Weinheim, 2009; pp 3-46. (b) Ioannidis, S.; Lamb, M. L.; Davies, A. M.;
Almeida, L.; Su, M.; Bebernitz, G.; Ye, M.; Bell, K.; Alimzhanov, M.;
Zinda, M. Bioorg. Med. Chem. Lett. 2009, 19, 6524–6528. (c) Balko, T. W.;
Buysse, A. M.; Epp, J. B.; Fields, S. C.; Lowe, C. T.; Keese, R. J.; Richburg,
J. S., III; Ruiz, J. M.; Weimer, M. R.; Green, R. A.; Gast, R. E.; Bryan, K.;
Irvine, N. M.; Lo, W. C.-L.; Brewster, W. K.; Webster, J. D. US6784137,
2004. (d) Phillips, G.; Davey, D. D.; Eagen, K. A.; Koovakkat, S. K.; Liang,
A.; Ng, H. P.; Pinkerton, M.; Trinh, L.; Whitlow, M.; Beatty, A. M.;
Morrissey, M. M. J. Med. Chem. 1999, 42, 1749–1756. (e) Saari, W. S.;
Halczenko, W.; King, S. W.; Huff, J. R.; Guare, J. P.; Hunt, C. A.; Randall,
W. C.; Anderson, P. S.; Lotti, V. J. J. Med. Chem. 1983, 26, 1696–1701.
(f) Rauckman, B. S.; Roth, B. J. Med. Chem. 1980, 23, 384–391.
(9) (a) Parthasarathy, K.; Jeganmohan, M.; Cheng, C. Org. Lett. 2008,
10, 325–328. (b) Hu, J.; Zhang, Q.; Yuan, H.; Liu, Q. J. Org. Chem. 2008,
73, 2442–2445. (c) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am.
Chem. Soc. 2007, 129, 10096–10097. (d) Movassaghi, M.; Hill, M. D. J. Am.
Chem. Soc. 2006, 128, 4592–4593. (e) Barluenga, J.; Pozo, C.; Olano, B.
Synthesis 1996, 1996, 133–140. (f) Oliver Kappe, C. Tetrahedron 1993,
49, 6937–6963. (g) Barluenga, J.; Toma´s, M.; Jardo´n, J.; Rubio, E.; Gotor,
V. Synthesis 1989, 1989, 230–232.
As listed in Table 1, N-(1,1,1-trifluoro-4-phenylbut-3-yn-
2-ylidene)aniline 1a and benzylamine 2a were chosen as
model substrates to screen the optimal reaction conditions.
Table 1. Optimization of Reaction Conditionsa
yield (%)b
entry
solvent
base
time (h)
3a
45
30
47
90
59
98 (97)
4a
(10) (a) Fields, S. C.; Lo, W. C.; Brewster, W. K.; Lowe, C. T.
Tetrahedron Lett. 2010, 51, 79–81. (b) von Kieseritzky, F.; Lindstro¨m, J.
Synthesis 2010, 63, 66. (c) Dolbier, W. R.; Xu, Y. J. Fluorine Chem. 2003,
123, 71–73. (d) Fukuhara, T.; Yoneda, N.; Suzuki, A. J. Fluorine Chem.
1988, 38, 435–438. (e) Pews, R. G.; Lysenko, Z. J. Org. Chem. 1985, 50,
5115–5119. (f) Boudakian, M. M. J. Fluorine Chem. 1981, 18, 497–506.
(11) Amii, H.; Uneyama, K. Chem. ReV. 2009, 109, 2119–2183.
(12) Kiselyov, A. S.; Piatnitski, E. L.; Doody, J. Org. Lett. 2004, 6,
4061–4063, and references therein.
1
2
3
4
5
6
CH3CN
toluene
DMF
DME
dioxane
THF
Cs2CO3
2
6
2
2
3
-
′′
′′
′′
′′
4
2
-
-
-
′′
2
7
8
9
10
11
12
MeOH
THF
THF
THF
THF
′′
-
2
2
2
12
12
1
5
-
80
72
12
-
-
(13) (a) Uneyama, K. In Organofluorine Chemistry; Blackwell Publish-
ing Ltd.: Oxford, 2006; p 107. (b) Amii, H.; Kobayashi, T.; Hatamoto, Y.;
Uneyama, K. Chem. Commun. 1999, 1323, 1324.
99 (98)
20
0
88
46
KOH
K3PO4
K2CO3
DBU
(14) (a) Kiselyov, A. S.; Piatnitski, E. L.; Doody, J. Org. Lett. 2004, 6,
4061–4063. (b) Ichikawa, J.; Wada, Y.; Miyazaki, H.; Mori, T.; Kuroki,
H. Org. Lett. 2003, 5, 1455–1458.
THF
(15) (a) Kobayashi, T.; Nakagawa, T.; Amii, H.; Uneyama, K. Org. Lett.
2003, 5, 4297–4300. (b) Amii, H.; Kobayashi, T.; Terasawa, H.; Uneyama,
K. Org. Lett. 2001, 3, 3103–3105.
a Reactions were carried out on a 0.3 mmol scale with benzylamine
(3.0 equiv), base (2.5 equiv), and solvent (2 mL) at 80 °C unless otherwise
stated. b Reported yields were based on 1a determined by 19F NMR. Values
in parentheses are of isolated yields.
(16) The X-ray crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre under deposition number 769650
(3a) and 778755 (5a).
Org. Lett., Vol. 12, No. 19, 2010
4377