Communications
[14] Similar conditions were used earlier by Evans et al; see
reference [3a].
[15] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277 –
7287.
[16] W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405 – 4408.
This macrocyclization tactic had earlier been used by Forsyth
et al.[2] and Smith et al.[4] in their total synthesis of phorboxa-
zole A.
[17] The Z/E ratio followed from examination of the absorptions
associated with the Z (d = 5.92 ppm) and E (d = 6.90 and
5.85 ppm) olefinic H atoms in the 1H NMR spectrum of the
mixture.
the aldehyde–phosphonate 17 under the conditions of Still
and Gennari[16] gave the Z-a,b-unsaturated macrolide 18,
containing approximately 25% of the corresponding E
isomer.[17] Removal of the three silyl protecting groups in 18
with tetrabutylammonium fluoride in THF at 08C, followed
by chromatography, finally produced (þ)-phorboxazole A
ꢀ
(1), contaminated with its C2 C3 E isomer. Further purifi-
cation by reversed-phase HPLC provided pure (þ)-phorbox-
azole A, whose 1H and 13C NMR spectra, together with high-
resolution
mass
spectrometric
data
(calcd
for
C53H71N2O1379BrNa [MþNa, 79Br]+: 1045.4037; found:
[18] Naturally derived phorboxazole A had [a]D = + 44.88 (c = 1.0,
MeOH). All new compounds reported in this study showed
satisfactory spectroscopic and mass spectrometric data.
1045.4053 (100%) (ESI)) and optical rotation data ([a]D20
=
+ 43.3, c = 0.12, CHCl3) corresponded to those reported for
the natural product.[1a,18]
Received: October 28, 2002 [Z50447]
Keywords: antifungal agents · antitumor agents · natural
.
products · olefination · total synthesis
[1] a) P. A. Searle, T. F. Molinski, J. Am. Chem. Soc. 1995, 117,
8126 – 8131; b) P. A. Searle, T. F. Molinski, L. J. Brzezinski, J. W.
Leahy, J. Am. Chem. Soc. 1996, 118, 9422 – 9423; c) T. F.
Molinski, Tetrahedron Lett. 1996, 37, 7879 – 7880.
[2] C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc.
1998, 120, 5597 – 5598.
[3] a) D. A. Evans, D. M. Fitch, T. E. Smith, J. Am. Chem. Soc. 2000,
122, 10033 – 10046; b) D. A. Evans, V. J. Cee, T. E. Smith, K. J.
Santiago, Org. Lett. 1999, 1, 87 – 90.
[4] a) A. B. Smith III, P. R. Verhoest, K. P. Minbiole, M. Schelhaas,
J. Am. Chem. Soc. 2001, 123, 10942 – 10953. b) After the
submission of this paper another total synthesis of phorboxazo-
le A was completed. See the next paper in this issue: D. R.
Williams, A. A. Kiryanov, U. Emde, M. P. Clark, M. A. Berliner,
J. T. Reeves, Angew. Chem. 2003, 115, 1296 – 1300; Angew.
Chem. Int. Ed. 2003, 42, 1258 – 1262.
[5] a) P. Wolbers, H. M. R. Hoffmann, F. Sasse, Synlett 1999, 11,
1808 – 1810; b) F. M. Uckun, C. J. Forsyth, Bioorg. Med. Chem.
Lett. 2001, 11, 1181 – 1183; c) T. F. Molinski, L. J. Brzezinski,
J. W. Leahy, Tetrahedron: Asymmetry 2002, 13, 1013 – 1016.
[6] G. Pattenden, A. T. Plowright, J. A. Tornos, T. Ye, Tetrahedron
Lett. 1998, 39, 6099 – 6102.
[7] G. Pattenden, T. Ye, Tetrahedron Lett. 1998, 39, 319 – 322.
[8] G. Pattenden, A. T. Plowright, Tetrahedron Lett. 2000, 41, 983 –
986.
[9] Several other synthetic approaches to the phorboxazoles have
been described by other research groups. For a full bibliography,
see: P. B. Greer, W. A. Donaldson, Tetrahedron 2002, 58, 6009 –
6018.
[10] P. Little, D. S. Millan, unpublished results.
[11] The sulfone was prepared by using similar chemistry to that
described earlier in reference [6]. For the use of benzothiazolyl
sulfones in olefination reactions, see: a) J. B. Baudin, G. Hareau,
S. A. Julia, O. Ruel, Bull. Soc. Chim. Fr. 1993, 130, 336 – 357;
b) J. B. Baudin, G. Hareau, S. A. Julia, R. Lorne, O. Ruel, Bull.
Soc. Chim. Fr. 1993, 130, 856 – 878.
[12] The oxazole phosphonate 10 was prepared by using standard
procedures from the known 4-hydroxymethyl-2-methyloxazole;
see: D. A. Entwistle, S. I. Jordan, J. Montgomery, G. Pattenden,
Synthesis 1998, 603 – 612.
[13] Y. Guindon, C. Yoakin, H. E. Morton, J. Org. Chem. 1984, 49,
3912 – 3920.
1258
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1433-7851/03/4211-1258 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2003, 42, No. 11