C O M M U N I C A T I O N S
Scheme 2
Al-mediated aldol reaction is a highly flexible and enantioselective
method to prepare the substituted phenylserine residues that possess
the correct C10 stereochemistries for both ustiloxin and phomopsin
family members. Furthermore, this reaction furnished the oxazoline
product as a protecting group for the C9-C10 amino alcohol, and
following 10 intervening transformations, our alkylative strategy
for oxazoline deprotection delivered the desired N-methylated amine
that is found in the natural product. Finally, the incorporation of
the peptide side chain prior to macrocyclization will allow us to
extend this strategy to the synthesis of more complex phomopsin
family members.
Acknowledgment. We thank Dr. Yukiko Koiso for providing
a sample of natural ustiloxin D. We also thank Professors Evans
and Trost and members of their laboratories for helpful advice. This
work was supported by a Dreyfus Foundation Teacher-Scholar
Award to T.J.W.
Supporting Information Available: Full characterization of natural
and synthetic samples of ustiloxin D (PDF). This material is available
References
nonracemic tertiary carbonate substrates to improve the selectivity
of this transformation.
(1) (a) Koiso, Y.; Natori, S.; Iwasaki, S.; Sato, S.; Sonoda, R.; Fujita, Y.;
Yaegashi, H.; Sato, Z. Tetrahedron Lett. 1992, 33, 4157-4160. (b) Koiso,
Y.; Li, Y.; Iwasaki, S. J. Antibiot. 1994, 47, 765-773.
Sharpless’s asymmetric dihydroxylation was used to set the C3
stereochemistry in 72% yield as a 5:1 ratio of diastereomers.
Monosubstituted alkenes possessing allylic oxygenation are not
generally the best substrates for this reaction,14 and the (DHQD)2PYR
ligand provided the best selectivity in our hands. The primary
alcohol of 11 was selectively oxidized to the carboxylic acid in
two steps, and the corresponding acid was coupled to Gly-OtBu to
provide 13. Activation of the secondary hydroxyl group as a
trifluoromethanesulfonate, followed by treatment with anhydrous
lithium azide in DMPU,15 installed the C3 nitrogen functionality.
Reduction of azide 14 to the corresponding amine followed by
coupling to Boc-valine provided 15 (Scheme 2). Treatment with
methyl trifluoromethanesulfonate followed by NaBH4 converted the
oxazoline to the N-methyloxazolidine, which was then hydrolyzed
to amino alcohol 16 upon treatment with mild acid. Careful
treatment of 16 with 3 equiv of lithium hydroxide at 0 °C selectively
hydrolyzed the methyl ester, which was followed by in situ
protection of the secondary amine. The Boc group was selectively
removed using 20% TFA (v/v) in dichloromethane at 0 °C to
provide macrolactam precursor 17. Slow addition of amino acid
17 to a DMF solution containing the coupling agent PyAOP16 and
Hunig’s base provided macrocycle 18. A two-step deprotection
protocol, hydrogenolysis followed by basic hydrolysis, gave
synthetic ustiloxin D, which proved to be identical to a sample of
the natural product by spectroscopic analyses (1H and 13C NMR,
HRMS, and specific rotation) as well as by TLC and HPLC
analysis.
(2) (a) Culvenor, C. C. J.; Beck, A. B.; Clarke, M.; Cockrum, P. A.; Edgar,
J. A.; Frahn, J. L.; Jago, M. W.; Lanigan, G. W.; Pane, A. L.; Peterson,
J. E.; Smith, L. W.; White, R. R. Aust. J. Biol. Sci. 1977, 30, 269-277.
(b) MacKay, M. F.; Van Donkelaar, A.; Culvenor, C. C. J. J. Chem. Soc.,
Chem. Commun. 1986, 1219-1221. (c) Culvenor, C. C. J.; Edgar, J. A.;
MacKay, M. F. Tetrahedron 1989, 45, 2351-2372.
(3) Iwasaki, S. Med. Res. ReV. 1993, 13, 183-198.
(4) (a) Stohlmeyer, M. M.; Tanaka, H.; Wandless, T. J. J. Am. Chem. Soc.
1999, 121, 6100-6101. (b) Woiwode, T. F.; Rose, C.; Wandless, T. J. J.
Org. Chem. 1998, 63, 9594-9596. (c) Woiwode, T. F.; Wandless, T. J.
J. Org. Chem. 1999, 64, 7670-7674.
(5) (a) Mutoh, R.; Shirai, R.; Koiso, Y.; Iwasaki, S. Heterocycles 1995, 41,
9-12. (b) Takahashi, M.; Shirai, R.; Koiso, Y.; Iwasaki, S. Heterocycles
1998, 47, 163-166. (c) Morisaki, N.; Mitsui, Y.; Yamashita, Y.; Koiso,
Y.; Shirai, R.; Hashimoto, Y.; Iwasaki, S. J. Antibiot. 1998, 51, 423-
427.
(6) La¨ıb, T.; Zhu, J. Synlett. 2000, 1363-1365.
(7) Hutton, C. A.; White, J. M. Tetrahedron Lett. 1997, 38, 1643-1646.
(8) Cao, B.; Oark, H.; Joullie´, M. M. J. Am. Chem. Soc. 2002, 124, 520-
521.
(9) (a) Tao, B.; Schlingloff, G.; Sharpless, K. B. Tetrahedron Lett. 1998, 39,
2507-2510. (b) Andersson, M. A.; Epple, R.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem., Int. Ed. 2002, 41, 472-475.
(10) Park, H.; Cao, B.; Joullie´, M. M. J. Org. Chem. 2001, 66, 7223-7226.
(11) Woiwode, T. F. Ph.D. Thesis, Stanford University, August 2000; Chapters
2 and 3.
(12) Evans, D. A.; Janey, J. M.; Magomedov, N.; Tedrow, J. S. Angew. Chem.,
Int. Ed. 2001, 40, 1884-1888.
(13) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545-4554.
(b) Trost, B. M.; Gunzner, J. L. J. Am. Chem. Soc. 2001, 123, 9449-
9450. (c) Trost, B. M.; Gunzner, J. L.; Dirat, O.; Rhee, Y. H. J. Am.
Chem. Soc. 2002, 124, 10396-10415.
(14) (a) Wang, Z. M.; Zhang, X. L.; Sharpless, K. B. Tetrahedron Lett. 1993,
34, 2267-2270. (b) Crispino, G. A.; Jeong, K. S.; Kolb, H. C.; Wang, Z.
M.; Zu, D. Q.; Sharpless, K. B. J. Org. Chem. 1993, 58, 3785-3786. (c)
Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994,
94, 2483-2547.
(15) DMPU: 1,3-dimethyl-3,4,5,6-tetrahydro-2(H)-pyrimidinone.
(16) Carpino, L.; El-Paham, A.; Minor, C. A.; Albericio, F. J. Chem. Soc.,
Chem. Commun. 1994, 201-203. PyAOP: 7-azabenzotriazol-1-yloxy-
tris(pyrrolidino)phosphonium hexafluorophosphate.
The enantioselective total synthesis of ustiloxin D has been
achieved starting with 2,3-dihydroxybenzaldehyde. Three catalytic
asymmetric reactions were employed to set the four stereocenters
at C2, C3, C9, and C10. In particular, the use of Evans’s
JA035429F
9
J. AM. CHEM. SOC. VOL. 125, NO. 23, 2003 6865