Full Paper
[2]
[3]
[4]
A. Hamdach, E. M. El Hadrami, S. Gil, R. J. Zaragozá, E. Zaballos-García, J.
Sepúlveda-Arques, Tetrahedron 2006, 62, 6392–6397.
M. Tamura, M. Honda, K. Noro, Y. Nakagawa, K. Tomishige, J. Catal. 2013,
305, 191–203.
a) R. A. Watile, D. B. Bagal, K. M. Deshmukh, K. P. Dhake, B. M. Bhanage,
J. Mol. Catal. A 2011, 351, 196–203; b) Y. Wu, L. He, Y. Du, J. Wang, C.
Miao, W. Li, Tetrahedron 2009, 65, 6204–6210; c) X. Dou, L. He, Z. Yang,
Synth. Commun. 2012, 42, 62–74; d) Z. Yang, L. He, S. Peng, A. Liu, Green
Chem. 2010, 12, 1850–1854; e) Z. Yang, Y. Li, Y. Wei, L. He, Green Chem.
2011, 13, 2351–2353.
a) B. Gabriele, G. Salerno, D. Brindisi, M. Costa, G. P. Chiusoli, Org. Lett.
2000, 2, 625–627; b) J. Liu, X. Peng, J. Liu, S. Zheng, W. Sun, C. Xia,
Tetrahedron Lett. 2007, 48, 929–932.
Experimental Section
General: Ethyl phenylcarbamate, propylene oxide, and other epox-
ides were supplied by TCI. (S/R)-Propylene oxides were purchased
from Adamas-beta. All ionic liquids were supplied by Center of
Green Chemistry and Catalysis, LICP, and CAS. The other reagents
were commercial reagents of AR grade and were used without fur-
ther purification. The arylcarbamates were synthesized by the reac-
tion of arylamines with diethyl carbonate in the presence of the
ionic liquid BmimOAc as catalyst (see the Supporting Information).
GC analysis was performed by using a Shimadzu GC-14B instrument
equipped with a DM-1701capillary column (30 m × 0.32 mm × 0.25 μm)
and a flame ionization detector. The NMR spectra were recorded
with Bruker Ascend 400 and DRX500 spectrometers with tetrameth-
ylsilane as the internal standard. HRMS analyses were performed
with a Bruker Microtof II instrument. The enantiomeric excesses
(ees) were determined by HPLC analysis, which was performed with
an Agilent series instrument and a Daicel Chiralcel OD-H column.
The DFT calculations were carried out by using the B3LYP functional
with the 6-311g basis set as implemented in the Gaussian 09[18]
program package. Vibrational frequency calculations, from which
the zero-point energies were derived, were performed for each opti-
mized structure at the same level of theory to identify the natures
of all the stationary points.
[5]
[6] S. Pulla, V. Unnikrishnan, P. Ramidi, S. Z. Sullivan, A. Ghosh, J. L. Dallas, P.
Munshi, J. Mol. Catal. A 2011, 338, 33–43.
[7]
[8]
a) G. P. Speranza, W. J. Peppel, J. Org. Chem. 1958, 23, 1922–1924; b) J. E.
Herweh, W. J. Kauffman, Tetrahedron Lett. 1971, 12, 809–812.
a) R. L. Paddock, D. Adhikari, R. L. Lord, M. Baik, S. T. Nguyen, Chem.
Commun. 2014, 50, 15187–15190; b) C. Beattie, M. North, RSC Adv. 2014,
4, 31345–31352; c) T. Baronsky, C. Beattie, R. W. Harrington, R. Irfan, M.
North, J. G. Osende, C. Young, ACS Catal. 2013, 3, 790–797; d) P. Wang,
J. Qin, D. Yuan, Y. Wang, Y. Yao, ChemCatChem 2015, 7, 1145–1151.
a) J. Shang, S. Liu, L. Lu, X. Ma, Y. He, Y. Deng, Catal. Commun. 2012, 28,
13–17; b) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, L.
Sambri, Org. Lett. 2005, 7, 1983–1985; c) I. Shibata, A. Baba, H. Iwasaki,
H. Matsuda, J. Org. Chem. 1986, 51, 2177–2184; d) Y. Iwakura, S. I. Izawa,
J. Org. Chem. 1964, 29, 379–382; e) V. Laserna, W. Guo, A. W. Kleij, Adv.
Synth. Catal. 2015, 357, 2849–2854; f) J. A. Birrell, E. N. Jacobsen, Org.
Lett. 2013, 15, 2895–2897; g) E. J. Brnardic, M. E. Fraley, R. M. Garbaccio,
M. E. Layton, J. M. Sanders, C. Culberson, M. A. Jacobson, B. C. Magliaro,
P. H. Hutson, J. A. O'Brien, S. L. Huszar, J. M. Uslaner, K. L. Fillgrove, C.
Tang, Y. Kuo, S. M. Sur, G. D. Hartman, Bioorg. Med. Chem. Lett. 2010, 20,
3129–3133.
J. Shang, Z. Li, C. Su, Y. Guo, Y. Deng, RSC Adv. 2015, 5, 71765–71769.
a) L. Zhang, X. Fu, G. Gao, ChemCatChem 2011, 3, 1359–1364; b) B. Wang,
E. H. M. Elageed, D. Zhang, S. Yang, S. Wu, G. Zhang, G. Gao, Chem-
CatChem 2014, 6, 278–283; c) B. Wang, S. Yang, L. Min, Y. Gu, Y. Zhang,
X. Wu, L. Zhang, E. H. M. Elageed, S. Wu, G. Gao, Adv. Synth. Catal. 2014,
356, 3125–3134; d) E. H. M. Elageed, B. Wang, Y. Zhang, S. Wu, G. Gao, J.
Mol. Catal. A 2015, 408, 271–277; e) L. Zhang, S. Yang, G. Gao, Chin. J.
Catal. 2011, 32, 1875–1879; f) B. Wang, Z. Luo, E. H. M. Elageed, S. Wu,
Y. Zhang, X. Wu, F. Xia, G. Zhang, G. Gao, ChemCatChem 2016, 8, 830–
838.
[9]
General Procedure for Synthesis of 5-Substituted Oxazolidin-
ones from the Reaction of Arylcarbamates with Epoxides: In a
typical procedure, the reactions of arylcarbamates with epoxides
were carried out in a 15 mL thick-walled pressure bottle. Aryl-
carbamates (5.0 mmol), epoxides (10.0 mmol), and BmimOAc (10 %,
0.5 mmol, 0.10 g) were mixed together and stirred at 100 °C for 3 h.
The reaction mixtures were analyzed by GC with n-dodecane as the
internal standard. The pure products were obtained by chromatog-
raphy on silica gel and structurally characterized by NMR spectro-
scopy.
[10]
[11]
General Procedure for Synthesis of Chiral 5-Substituted Ox-
azolidinones from the Reaction of Arylcarbamates with Chiral
Terminal Epoxides: In a typical procedure, the reactions of aryl-
carbamates with epoxides were carried out in a 15 mL thick-walled
pressure bottle. Arylcarbamates (5.0 mmol), chiral epoxides
(10.0 mmol), and BmimOAc (15 %, 0.75 mmol, 0.15 g) were mixed
together and stirred at 40 °C for 48 h. The reaction mixtures were
analyzed by GC with n-dodecane as the internal standard. The pure
products were obtained by chromatography on silica gel and struc-
turally characterized by NMR spectroscopy. The enantiomeric ex-
cesses (ee values) were determined by HPLC analysis.
[12]
[13]
a) V. I. Pârvulescu, C. Hardacre, Chem. Rev. 2007, 107, 2615–2665; b) T.
Welton, Chem. Rev. 1999, 99, 2071–2083; c) J. P. Hallett, T. Welton, Chem.
Rev. 2011, 111, 3508–3576; d) Z. Zheng, J. Wang, T. Wu, X. Zhou, Adv.
Synth. Catal. 2007, 349, 1095–1101.
a) S. R. Roy, A. K. Chakraborti, Org. Lett. 2010, 12, 3866–3869; b) A. Sarkar,
S. R. Roy, N. Parikh, A. K. Chakraborti, J. Org. Chem. 2011, 76, 7132–7140;
c) A. Sarkar, S. R. Roy, A. K. Chakraborti, Chem. Commun. 2011, 47, 4538–
4540; d) A. Sarkar, S. R. Roy, D. Kumar, C. Madaan, S. Rudrawar, A. K.
Chakraborti, Org. Biomol. Chem. 2012, 10, 281–286.
[14]
[15]
J. Palgunadi, S. Y. Hong, J. K. Lee, H. Lee, S. D. Lee, M. Cheong, H. S. Kim,
J. Phys. Chem. B 2011, 115, 1067–1074.
a) T. Kusumoto, K. Sato, T. Hiyama, S. Takehara, M. Osawa, K. Nakamura,
S. Fujisawa, Chem. Lett. 1991, 20, 1623–1624; b) F. Benedetti, S. Norbedo,
Tetrahedron Lett. 2000, 41, 10071–10074.
Acknowledgments
The authors thank the National Natural Science Foundation of
China (NSFC) (grant numbers 21273078 and 21573072) and the
Shanghai Leading Academic Discipline Project (project number
B409) for financial support.
[16]
[17]
A. K. Chakraborti, S. R. Roy, J. Am. Chem. Soc. 2009, 131, 6902–6903.
a) K. Sun, W. Li, Z. Feng, C. Li, Chem. Phys. Lett. 2009, 470, 259–263; b) Y.
Zhao, W. Wang, J. Li, F. Wang, X. Zheng, H. Yun, W. Zhao, X. Dong, Tetrahe-
dron Lett. 2013, 54, 5849–5852; c) E. N. Jacobsen, Acc. Chem. Res. 2000,
33, 421–431.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth-
ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-
chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
Keywords: Homogeneous catalysis · Reaction mechanisms ·
Cycloaddition · Ionic liquids · Nitrogen heterocycles
[18]
[1] a) D. J. Diekema, R. N. Jones, Lancet 2001, 358, 1975–1982; b) A. R. Ren-
slo, G. W. Luehr, M. F. Gordeev, Bioorg. Med. Chem. 2006, 14, 4227–4240;
c) T. A. Mukhtar, G. D. Wright, Chem. Rev. 2005, 105, 529–542; d) M. R.
Barbachyn, C. W. Ford, Angew. Chem. Int. Ed. 2003, 42, 2010–2023; Angew.
Chem. 2003, 115, 2056.
Eur. J. Org. Chem. 2016, 3650–3656
3655
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim