K. Shimada et al. / Tetrahedron Letters 44 (2003) 2517–2519
2519
Scheme 1. Plausible pathway for the formation of 3, 4, 6, 7, and 9.
It is noteworthy that 1,2,4-thiadiazoles were
4
4435–4438; (i) Motoki, S.; Toba, Y.; Karakasa, T.; Saito,
T. Chem. Lett. 1988, 319–322; (j) Braverman, S.; van
Asten, P. F. T. M.; van der Linden, J. B.; Zwanenburg, B.
Tetrahedron Lett. 1991, 31, 3867–3870; (k) Braverman, S.;
Grinstein, D.; Gottlieb, H. E. Tetrahedron Lett. 1994, 35,
953–956; (l) van der Linden, J. B.; van Asten, P. F. T. M.;
Braverman, S.; Zwanenburg, B. Recl. Trav. Chim. Pays-
Bas 1995, 114, 51–60; (m) Braverman, S.; Grinstein, D.;
Gottlieb, H. E. Tetrahedron 1997, 53, 13933–13944; (n)
Braverman, S.; Grinstein, D.; Gottlieb, H. E. J. Chem.
Soc., Perkin Trans. 1 1998, 103–107; (o) Capozzi, G.;
Menichetti, S.; Nativi, C.; Vergamini, C. Synthesis 1998,
915–918.
efficiently obtained through the contact of 3 with silica
gel or a Lewis acid. Several authors reported the forma-
tion of 4 through oxidative dimerization of primary
thioamides,5 and now we can propose a plausible path-
way of conversion of 3 into 4 involving the formation
of thioamide S-oxides 10 through acid-induced
hydrolytic fragmentation of 3 and the subsequent con-
densation of 10.
In conclusion, we have found a generation of novel
sulfine-type intermediates B through thermal cyclore-
version of 6H-1,3,5-oxathiazine S-oxides 2 and a facile
ring closure of B into 5H-1,2,4-oxathiazoles 3. Further
attempts for the expansion of the generation method to
other oxidized variants of 1,3-thiaza-1,3-butadienes
through a similar route starting from 1 are in progress
in our laboratory.
2. (a) Burger, K.; Albanbauer, J.; Eggersdorfer, M. Angew.
Chem. 1975, 87, 816–817; (b) Giordano, C.; Belli, A.; Abis,
L. Tetrahedon Lett. 1979, 20, 1537–1538; (c) Shimada, K.;
Aikawa, K.; Fujita, T.; Aoyagi, S.; Takikawa, Y.; Kabuto,
C. Chem. Lett. 1997, 701–702; (d) Shimada, K.; Aikawa,
K.; Fujita, T.; Sato, M.; Goto, K.; Aoyagi, S.; Takikawa,
Y.; Kabuto, C. Bull. Chem. Soc. Jpn. 2001, 74, 511–525.
3. Giordano, C.; Belli, A. Synthesis 1975, 789–791.
4. Chevrie, D.; Metzner, P. Tetrahedron Lett. 1998, 39, 8983–
8986.
Acknowledgements
5. (a) Franz, J. E.; Black, L. L. Tetrahedron Lett. 1970, 11,
1381–1384; (b) Howe, R. K.; Franz, J. E. J. Chem. Soc.,
Chem. Commun. 1973, 524–525; (c) Howe, R. K.; Franz, J.
E. J. Org. Chem. 1974, 39, 962–964; (d) Franz, J. E.; Pearl,
H. K. J. Org. Chem. 1976, 41, 1296–1297; (e) Howe, R. K.;
Gruner, R. A.; Franz, J. E. J. Org. Chem. 1977, 42,
1813–1814; (f) Margaridda Damas, A.; Gould, R. O.;
Harding, M. M.; Paton, R. M. J. Chem. Soc., Perkin
Trans. 1 1981, 2991–2995; (g) El-Wassimy, W. T. M.;
Jørgensen, K. A.; Lawesson, S.-O. Tetrahedron 1983, 39,
1729–1734; (h) Machida, M.; Oda, K.; Kanaoka, Y. Tet-
rahedron Lett. 1984, 25, 409–410; (i) Buffel, D. K.; Simons,
B. P.; Deceuninck, J. A.; Hoornaert, G. J. J. Org. Chem.
1984, 49, 2165–2168; (j) Takikawa, Y.; Shimada, K.; Sato,
K.; Sato, S.; Takizawa, S. Bull. Chem. Soc. Jpn. 1985, 58,
995–999; (k) Wentrup, C.; Kambouris, P. Chem. Rev.
1991, 91, 363–373 and references cited therein.
This work was partially supported by The Foundation
for Japanese Chemical Research (333(R)).
References
1. (a) Skold, C. N.; Schlessinger, R. H. Tetrahedron Lett.
1970, 11, 791–794; (b) Barton, D. H. R.; Choi, L. S. L.;
Hesse, R. H.; Pechet, M.; Wolshire, C. J. Chem. Soc.,
Chem. Commun. 1975, 557; (c) van Tilborg, W. J. M. Recl.
Trav. Chim. Pays-Bas 1976, 95, 140–143; (d) Saito, T.;
Motoki, S. J. Org. Chem. 1977, 42, 3922–3925; (e) Franck-
Neumann, M.; Lohmann, J. J. Tetrahedron Lett. 1979, 20,
2397–2400; (f) Karakasa, T.; Motoki, S. Tetrahedron Lett.
1979, 20, 3961–3962; (g) Karakasa, T.; Ohmura, H.;
Motoki, S. Chem. Lett. 1980, 825–826; (h) Saito, T.;
Shibahara, N.; Motoki, S. Tetrahedron Lett. 1983, 24,