Page 5 of 7
Journal of the American Chemical Society
(7) For selected synthetic studies and total syntheses on
Kotaro Nagatani – Department of Chemistry and Biochemistry,
Graduate School of Advanced Science and Engineering, Waseda
University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
fusicoccane diterpenoids, see: (a) Kato, N.; Tanaka, S.; Takeshita, H.
Chem. Soc. Jpn. 1988, 61, 3231–3237. (c) Total Synthesis of
Fusicogigantones A and B and Fusicogigantepoxide via the Singlet
Oxygen-Oxidation of Fusicoceadienes. “Fusicogigantepoxide B”, a
Missing Congener Metabolite. Kato, N.; Nakanishi, K.; WU, X.;
Nishikawa, H.; Takeshita, H. Tetrahedron Lett. 1994, 35, 8205–8208.
(d) Paquette, L. A.; Sun, L.-Q.; Friedrich, D.; Savage, P. B. Highly
Total Synthesis of (+)-Epoxydictymene. Application of Alkoxy-
Directed Cyclization to Diterpenoid Construction. Paquette, L. A.;
Sun, L.-Q.; Friedrich, D.; Savage, P. B. J. Am. Chem. Soc. 1997, 119,
8438–8450. (f) Michalak, K.; Michalak, M.; Wicha, J. Studies
Towards the Total Synthesis of Di- and Sesterterpenes with
Dicyclopenta[a,d]cyclooctane Skeletons. Three-component Approach
to the A/B Rings Building Block. Molecules 2005, 10, 1084–1100. (g)
Williams, D. R.; Robinson, L. A.; Nevill, C. R.; Reddy, J. P.
Chem., Int. Ed. 2007, 46, 915–918. (h) Dake, G. R.; Fenster, E. E.;
Med. Chem. 2011, 50B 73–76. (j) Fujitani, B.; Hanaya, K.;
Higashibayashi, S.; Shoji, M.; Sugai, T. Construction of 2,6,9,11-
tetraoxatricyclo[6.2.1.03,8]undecane containing 4-keto-D-glucose
skeleton Tetrahedron 2017, 73, 7217–7222. (k) Kuwata, K.; Hanaya,
Tetrahedron 2017, 73, 6039–6045. (l) Kuwata, K.; Hanaya, K.; Sugai,
1
2
3
4
5
6
7
8
Complete
contact
information
is
available
at:
https://pubs.acs.org/XX.XXXX/jacs.XXXXXXX
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
This paper is dedicated to Prof. Masaji Ohno on the occasion of
his 90th birthday. We acknowledge supports of the Materials
Characterization Central Laboratory, Waseda University, for
characterization of new compounds. This work was financially
supported by JSPS KAKENHI (Grant No. JP15H05841 in Middle
Molecular Strategy), the Naito Foundation, and a Waseda
University Grant for Special Research Projects.
REFERENCES
(1) (a) Sassa, T.; Tojyo, T.; Munakata, K. Isolation of a New Plant
Growth Substance with Cytokinin-like Activity. Nature 1970, 227,
379. (b) Sassa, T. Cotylenins, Leaf Growth Substances Produced by a
Fungus, Part I. Isolation and Characterization of Cotylenins A and B.
Agric. Biol. Chem. 1971, 35, 1415–1418. (c) Sassa, T.; Ooi, T.;
Nukina, M.; Kato, N. Structural Confirmation of Cotylenin A, a
Novel Fusicoccane-diterpene Glycoside with Potent Plant Growth-
regulating Activity from Cladosporium Fungus sp. 501-7W. Biosci.
Biotechnol. Biochem. 1998, 62, 1815–1819.
(2) (a) Asahi, K.; Honma, Y.; Hazeki, K.; Sassa, T.; Kubohara, Y.;
Sakurai, A.; Takahashi, N. Cotylenin A, a Plant-Growth Regulator,
Induces the Differentiation in Murine and Human Myeloid Leukemia
Cells. Biochem. Biophys. Res. Commun. 1997, 238, 758–763. (b)
Honma, Y. Cotylenin A--A Plant Growth Regulator as
a
Differentiation-inducing Agent Against Myeloid Leukemia. Leuk.
Lymphoma 2002, 43, 1169–1178. (c) Honma, Y.; Ishii, Y.;
Yamamoto-Yamaguchi, Y.; Sassa, T.; Asahi, K. Cotylenin A, a
Differentiation-inducing Agent, and IFN-α Cooperatively Induce
Apoptosis and Have an Antitumor Effect on Human Non-Small Cell
Lung Carcinoma Cells in Nude Mice. Cancer Res. 2003, 63, 3659–
3666. (d) Honma, Y.; Kasukabe, T.; Yamori, T.; Kato, N.; Sassa, T.
Tetrahedron: Asymmetry 2017, 28, 964–968.
99, 680–688. (e) Matsunawa, W.; Ishii, Y.; Kasukabe, T.; Tomoyasu,
S.; Ota, H.; Honma, Y. Cotylenin A-induced differentiation is
independent of the transforming growth factor-β signaling system in
human myeloid leukemia HL-60 cells. Leuk. Lymphoma 2006, 47,
733–740.
(3) Ottmann, C.; Weyand, M.; Sassa, T.; Inoue, T.; Kato, N.;
Wittinghofer, A.; Oecking, C. A Structural Rationale for Selective
Stabilization of Anti-tumor Interactions of 14-3-3 proteins by
Cotylenin A. J. Mol. Biol. 2009, 386, 913–919.
(8) (a) Okamoto, H.; Arita, H.; Kato, N.; Takeshita, H. Total
activity. Chem. Lett. 1994, 2335–2338. (b) Kato, N.; Okamoto, H.;
Takeshita, H. Total Synthesis of Optically Active Cotylenol, a Fungal
Metabolite Having a Leaf Growth Activity. Intramolecular Ene
Reaction for an Eight-Membered Ring Formation. Tetrahedron 1996,
52, 3921–3932.
(9) Hirai, S.; Utsugi, M.; Iwamoto, M.; Nakada, M. Formal Total
Synthesis of (–)-Taxol through Pd-Catalyzed Eight-Membered
Carbocyclic Ring Formation. Chem.–Eur. J. 2015, 21, 355–359
(10) (a) Honma, M.; Sawada, T.; Fujisawa, Y.; Utsugi, M.;
Watanabe, H.; Umino, A.; Matsumura, T.; Hagihara, T.; Takano, M.;
Nakada, M. Asymmetric Catalysis on the Intramolecular
Cyclopropanation of α-Diazo-β-keto Sulfones. J. Am. Chem. Soc.
2003, 125, 2860-2861. (b) Honma, M.; Takeda, H.; Takano, M.;
Nakada, M. Development of Catalytic Asymmetric Intramolecular
Cyclopropanation of α-Diazo-β-Keto Sulfones and Applications to
Natural Product Synthesis. Synlett 2009, 1695-1712.
(4) Molzan, M.; Kasper, S.; Roeglin, L.; Skwarczynska, M.; Sassa,
T.; Inoue, T.; Breitenbuecher, F.; Ohkanda, J.; Kato, N.; Schuler, M.;
Ottmann, C. Stabilization of Physical RAF/14-3 ‑ 3 Interaction by
Cotylenin A as Treatment Strategy for RAS Mutant Cancers. ACS
Chem. Biol. 2013, 8, 1869–1875.
(5) Ono, Y.; Minami, A.; Noike, M.; Higuchi, Y.; Toyomasu, T.;
Sassa, T.; Kato, N.; Dairi, T. Dioxygenases, Key Enzymes to
Determine the Aglycon Structures of Fusicoccin and Brassicicene,
Diterpene Compounds Produced by Fungi. J. Am. Chem. Soc. 2011,
133, 2548–2555.
(6) Our synthetic studies on cotylenin A: Nagatani, K.; Hoshino,
Y.; Tezuka, H.; Nakada, M. Enantioselective preparation of C-ring
fragment of cotylenin A via catalytic asymmetric intramolecular
cyclopropanation of α-diazo β-keto ester. Tetrahedron Lett. 2017, 58,
959–962.
(11) Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.-i.;
Tomioka, K. Thiol-Catalyzed Acyl Radical Cyclization of Alkenals.
J. Org. Chem. 2005, 70, 681-683.
(12) Maruoka, K.; Ooi, T.; Nagahara, S.; Yamamoto, H.
Organoaluminum-Catalyzed Rearrangement of Epoxides A Facile
Route to the Synthesis of Optically Active β-Siloxy Aldehydes.
Tetrahedron 1991, 47, 6983–6998.
ACS Paragon Plus Environment