Organic Letters
Letter
(3) For selected reviews and examples of enantioselective syntheses of
tetrahydroquinolines by (transfer) hydrogenation of quinolines, see:
(a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Asymmetric
Hydrogenation of Heteroarenes and Arenes. Chem. Rev. 2012, 112,
2557−2590. (b) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.;
Zhou, Y.-G. Highly Enantioselective Iridium-Catalyzed Hydrogenation
of Heteroaromatic Compounds, Quinolines. J. Am. Chem. Soc. 2003,
125, 10536−10537. (c) Rueping, M.; Antonchick, A. P.; Theissmann,
T. A Highly Enantioselective Brønsted Acid Catalyzed Cascade
Reaction: Organocatalytic Transfer Hydrogenation of Quinolines and
their Application in the Synthesis of Alkaloids. Angew. Chem., Int. Ed.
2006, 45, 3683−3686. (d) Deport, C.; Buchotte, M.; Abecassis, K.;
Tadaoka, H.; Ayad, T.; Ohshima, T.; Genet, J.-P.; Mashima, K.;
Ratovelomanana-Vidal, V. Novel Ir-SYNPHOS® and Ir-DIFLUOR-
PHOS® Catalysts for Asymmetric Hydrogenation of Quinolines. Synlett
2007, 2007, 2743−2747. (e) Guo, Q.-S.; Du, D.-M.; Xu, J. The
Development of Double Axially Chiral Phosphoric Acids and Their
Catalytic Transfer Hydrogenation of Quinolines. Angew. Chem., Int. Ed.
2008, 47, 759−762. (f) Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J.
pH-Regulated Asymmetric Transfer Hydrogenation of Quinolines in
Water. Angew. Chem., Int. Ed. 2009, 48, 6524−6528. (g) Rueping, M.;
Theissmann, T. Asymmetric Brønsted acid catalysis in aqueous
solution. Chem. Sci. 2010, 1, 473−476. (h) Wang, T.; Zhuo, L.-G.;
Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan,
A. S. C. Highly Enantioselective Hydrogenation of Quinolines Using
Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mech-
anism, and Origin of Enantioselectivity. J. Am. Chem. Soc. 2011, 133,
9878−9891. (i) Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang,
Y.; Zhou, Y.-G. Dihydrophenanthridine: A New and Easily Regenerable
NAD(P)H Model for Biomimetic Asymmetric Hydrogenation. J. Am.
Chem. Soc. 2012, 134, 2442−2448. (j) Ren, L.; Lei, T.; Ye, J.-X.; Gong,
L.-Z. Step-Economical Synthesis of Tetrahydroquinolines by Asym-
Sun, J. Complex Bioactive Alkaloid-Type Polycycles through Efficient
Catalytic Asymmetric Multicomponent Aza-Diels−Alder Reaction of
Indoles with Oxetane as Directing Group. Angew. Chem., Int. Ed. 2013,
52, 2027−2031. (b) Min, C.; Mittal, N.; Sun, D. X.; Seidel, D.
Conjugate-Base-Stabilized Brønsted Acids as Asymmetric Catalysts:
Enantioselective Povarov Reactions with Secondary Aromatic Amines.
Angew. Chem., Int. Ed. 2013, 52, 14084−14088. (c) Xu, H.; Zhang, H.;
Jacobsen, E. N. Chiral sulfinamidourea and strong Brønsted acid−
cocatalyzed enantioselective Povarov reaction to access Tetrahydro-
quinolines. Nat. Protoc. 2014, 9, 1860−1866. (d) Yu, J.; Jiang, H.-J.;
Zhou, Y.; Luo, S.-W.; Gong, L.-Z. Sodium Salts of Anionic Chiral
Cobalt(III) Complexes as Catalysts of the Enantioselective Povarov
Reaction. Angew. Chem., Int. Ed. 2015, 54, 11209−11213. (e) Rich-
mond, E.; Khan, I. U.; Moran, J. Enantioselective and Regiodivergent
Functionalization of N-Allylcarbamates by Mechanistically Divergent
Multicatalysis. Chem. - Eur. J. 2016, 22, 12274−12277. (f) Yu, X.-L.;
Kuang, L.; Chen, S.; Zhu, X.-L.; Li, Z.-L.; Tan, B.; Liu, X.-Y.
Counteranion-Controlled Unprecedented Diastereo- and Enantiose-
lective Tandem Formal Povarov Reaction for Construction of Bioactive
Octahydro-Dipyrroloquinolines. ACS Catal. 2016, 6, 6182−6190. For
an example involving asymmetric synthesis of amine-substituted THQs
via multiple steps, see: (g) Mosberg, H. I.; Yeomans, L.; Harland, A. A.;
Bender, A. M.; Sobczyk-Kojiro, K.; Anand, J. P.; Clark, M. J.; Jutkiewicz,
E. M.; Traynor, J. R. Opioid Peptidomimetics: Leads for the Design of
Bioavailable Mixed Efficacy μ Opioid Receptor (MOR) Agonist/δ
Opioid Receptor (DOR) Antagonist Ligands. J. Med. Chem. 2013, 56,
2139−2149.
(8) For selected examples of enantioselective synthesis of tetrahy-
droquinolines by Reissert-type reactions of quinolines followed by
reduction, see: (a) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki,
M. Asymmetric Reissert-type Reaction Promoted by Bifunctional
Catalyst. J. Am. Chem. Soc. 2000, 122, 6327−6328. (b) Takamura, M.;
Funabashi, K.; Kanai, M.; Shibasaki, M. Catalytic Enantioselective
Reissert-Type Reaction: Development and Application to the Synthesis
of a Potent NMDA Receptor Antagonist (−)-L-689,560 Using a Solid-
Supported Catalyst. J. Am. Chem. Soc. 2001, 123, 6801−6808.
(c) Amiot, F.; Cointeaux, L.; Jan Silve, E.; Alexakis, A. Enantioselective
nucleophilic addition of organometallic reagents to quinoline: regio-,
stereo- and enantioselectivity. Tetrahedron 2004, 60, 8221−8231.
(d) Bazin, M.; Kuhn, C. Use of Quinolinium Salts in Parallel Synthesis
for the Preparation of 4-Amino-2-alkyl-1,2,3,4-tetrahydroquinoline. J.
Comb. Chem. 2005, 7, 302−308. (e) Cointeaux, L.; Alexakis, A.
Enantioselective addition of organolithium reagents to quinoline
catalyzed by 1,2-diamines. Tetrahedron: Asymmetry 2005, 16, 925−
929. (f) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. Catalytic
Enantioselective Petasis-Type Reaction of Quinolines Catalyzed by a
Newly Designed Thiourea Catalyst. J. Am. Chem. Soc. 2007, 129, 6686−
6687. (g) Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. Copper-
Catalyzed Coupling of Pyridines and Quinolines with Alkynes: A One-
Step, Asymmetric Route to Functionalized Heterocycles. J. Org. Chem.
2008, 73, 1906−1910. (h) Graham, T. J. A.; Shields, J. D.; Doyle, A. G.
Transition Metal-Catalyzed Cross Coupling with N-Acyliminium Ions
Derived from Quinolines and Isoquinolines. Chem. Sci. 2011, 2, 980−
984. (i) Kodama, T.; Moquist, P. N.; Schaus, S. E. Enantioselective
Boronate Additions to N-Acyl Quinoliniums Catalyzed by Tartaric
Acid. Org. Lett. 2011, 13, 6316−6319. (j) Shields, J. D.; Ahneman, D.
T.; Graham, T. J. A.; Doyle, A. G. Enantioselective, Nickel-Catalyzed
Suzuki Cross-Coupling of Quinolinium Ions. Org. Lett. 2014, 16, 142−
̈
metric Relay Catalytic Friedlander Condensation/Transfer Hydro-
genation. Angew. Chem., Int. Ed. 2012, 51, 771−774. (k) Cai, X.-F.;
Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Palladium-catalyzed
asymmetric hydrogenation of 3-phthalimido substituted quinolines.
Chem. Commun. 2014, 50, 9588−9590. (l) Cai, X.-F.; Guo, R.-N.; Feng,
G.-S.; Wu, B.; Zhou, Y.-G. Chiral Phosphoric Acid-Catalyzed
Asymmetric Transfer Hydrogenation of Quinolin-3-amines. Org. Lett.
2014, 16, 2680−2683. (m) Cai, X.-F.; Guo, R.-N.; Chen, M.-W.; Shi,
L.; Zhou, Y.-G. Synthesis of Chiral Exocyclic Amines by Asymmetric
Hydrogenation of Aromatic Quinolin-3-amines. Chem. - Eur. J. 2014,
20, 7245−7248. (n) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-
G. Kinetic Resolution of Axially Chiral 5- or 8-Substituted Quinolines
via Asymmetric Transfer Hydrogenation. J. Am. Chem. Soc. 2016, 138,
́
10413−10416. (o) Aillerie, A.; Lemau de Talence, V.; Dumont, C.;
́
Pellegrini, S.; Capet, F.; Bousquet, T.; Pelinski, L. Enantioselective
transfer hydrogenation, a key step for the synthesis of 3-amino-
tetrahydroquinolines. New J. Chem. 2016, 40, 9034−9037.
(4) (a) Deninno, M. P.; Magnus-Aryitey, G. T.; Ruggeri, R. B.; Wester,
R. T. 4-Carboxyamino-2-substituted-1,2,3,4-tetrahydroquinolines. U.S.
Patent 6,197,786, March 6, 2001. (b) Deninno, M. P.; Magnus-Aryitey,
G. T.; Ruggeri, R. B.; Wester, R. T. 4-Amino substituted-2-substituted-
1,2,3,4-tetrahydroquinolines. U.S. Patent 6,140,343, Oct 31, 2000.
(c) Deninno, M. P.; Mularski, C. J.; Ruggeri, R. B.; Wester, R. T. 4-
Carboxyamino-2-methyl-1,2,3,4-tetrahydroquinolines. U.S. Patent
6,147,090, Nov 14, 2000. (d) Groneberg, R. D.; Eary, C. T. Inhibitors
of cholesterol ester transfer protein. US 2006270675, Nov 30, 2006.
(5) Leeson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.;
Smith, J. D.; Stevenson, G.; Chan, T.; Baker, R.; Foster, A. C.;
Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Hoogsteen, K. 4-Amido-2-
carboxytetrahydroquinolines. Structure−Activity Relationships for
Antagonism at the Glycine Site of the NMDA Receptor. J. Med.
Chem. 1992, 35, 1954−1968.
145. (k) Zurro, M.; Asmus, S.; Beckendorf, S.; Mu
̈
ck-Lichtenfeld, C.;
́
Garcıa Manchen
̃
o, O. Chiral Helical Oligotriazoles: New Class of
Anion-Binding Catalysts for the Asymmetric Dearomatization of
Electron-Deficient N-Heteroarenes. J. Am. Chem. Soc. 2014, 136,
13999−14002. (l) Pappoppula, M.; Cardoso, F. S. P.; Garrett, B. O.;
Aponick, A. Enantioselective Copper-Catalyzed Quinoline Alkynyla-
tion. Angew. Chem., Int. Ed. 2015, 54, 15202−15206. (m) Wang, Y.; Liu,
Y.; Zhang, D.; Wei, H.; Shi, M.; Wang, F. Enantioselective Rhodium-
Catalyzed Dearomative Arylation or Alkenylation of Quinolinium Salts.
Angew. Chem., Int. Ed. 2016, 55, 3776−3780. (n) Mengozzi, L.;
Gualandi, A.; Cozzi, P. G. Organocatalytic Stereoselective Addition of
(6) Ma, D.; Xia, C.; Jiang, J.; Zhang, J. First Total Synthesis of
Martinellic Acid, a Naturally Occurring Bradykinin Receptor
Antagonist. Org. Lett. 2001, 3, 2189−2191.
(7) For the asymmetric synthesis of amine-substituted THQs via
cyclization reactions, see: (a) Chen, Z.; Wang, B.; Wang, Z.; Zhu, G.;
E
Org. Lett. XXXX, XXX, XXX−XXX