J. J. Bronson et al. / Bioorg. Med. Chem. Lett. 13 (2003) 873–875
875
Table 1. Antibacterial and MurB inhibitory activity of imidazoli-
nones
6. Dhalla, A. M.; Yanchunas, J., Jr.; Ho, H.-T.; Falk, P. J.;
Villafranca, J. J.; Robertson, J. G. Biochemistry 1995, 34,
5390.
Compd
In vitro inhibition of MurB
IC50 (mM)
Antibacterial activitya
7. (a) Benson, T. E.; Marquardt, J. L.; Marquardt, A. C.;
Etzkorn, F. A.; Walsh, C. T. Biochemistry 1993, 32, 2024. (b)
Lees, W. J.; Benson, T. E.; Hogle, J. M.; Walsh, C. W. Bio-
chemistry 1996, 35, 1342. (c) Benson, T. E.; Walsh, C. T.;
Massey, V. Biochemistry 1997, 36, 796. (d) Constantine, K. L.;
Mueller, L.; Goldfarb, V.; Wittekind, M.; Metzler, W. J.;
Yanchunas, J., Jr.; Robertson, J. G.; Malley, M. F.; Frie-
drichs, M. S.; Farmer, B. T., II J. Mol. Biol. 1997, 267, 1223.
8. (a) Benson, T. E.; Walsh, C. T.; Hogle, J. M. Structure
1996, 4, 47. (b) ref 5. (c) Benson, T. E.; Walsh, C. T.; Hogle,
J. M. Biochemistry 1997, 36, 806. (d) Axley, M. J.; Fairman,
R.; Yanchunas, J., Jr.; Villafranca, J. J.; Robertson, J. G.
Biochemistry 1997, 36, 812.
MIC (mg/mL)
7
9
>118
>101
>115
40
—
—
—
4
2
4
10
11
12
16
17
1
16
15
25
12
4
—
aStaphylococcus aureus A9537.
9. Andres, C. J.; Bronson, J. J.; D’Andrea, S. V.; Deshpande,
M. S.; Falk, P. J.; Grant-Young, K. A.; Harte, W. E.; Ho, H.-
T.; Misco, P. F.; Robertson, J. G.; Stock, D.; Sun, Y.; Walsh,
A. W. Bioorg. Med. Chem. Lett. 2000, 10, 715.
10. (a) Divanfard, H. R.; Ibrahim, Y. A.; Joullie, M. M. J.
Heterocycl. Chem. 1978, 15, 691. (b) De Kimpe, N.; De Cock,
W.; Keppens, M.; De Smaele, D.; Meszaros, J. Heterocycl.
Chem. 1996, 33, 1179. (c) Meanwell, N. A.; Sit, S. Y.; Gao, J.;
Wong, H. S.; Gao, Q.; St Laurent, D. R.; Balasubramanian,
N. J. Org. Chem. 1995, 60, 1565.
From the data shown in Table 1 it is apparent that a
lipophilic substituent on the nitrogen distal to the
biphenyl ether moiety (N-1) is necessary for MurB
inhibitory activity. Compounds 16 and 17 both meet
this requirement and effectively inhibit the isolated
enzyme. Additionally, it is not necessary to have an
amide linkage as exemplified by 11 and 12. It is not
sufficient, however, to merely ‘cap’ the NH with a
methyl group as this leads to complete loss of activity
(10). The requirement for lipophilicity of the N-1 sub-
stituent is again demonstrated by the inactivity of 7 and
9. Of equal importance, these novel imidazolinone ana-
logues possess whole cell antibacterial activity which
tracks with MurB inhibitory activity. It remains, how-
ever, to be shown that the antibacterial activity
observed in S. aureus is due to inhibition of the MurB
enzyme.
11. Holzmann, G.; Krieg, B.; Lautenschlager, H.; Konieczny,
¨
P. J. Heterocycl. Chem. 1979, 16, 983.
12. Knolker, H. J.; Braxmeier, T. Synlett. 1997, 925.
¨
13. (a) Carpino, L. A.; Beyermann, M.; Wenschuh, H.; Bien-
ert, M. Acc. Chem. Res. 1996, 29, 268. (b) Kaduk, C.; Wen-
schuh, H.; Beyermann, M.; Forner, K.; Carpino, L.; Bienert,
M. Lett. Pep. Sci. 1995, 2, 285.
14. Carpino, L. A.; El-Faham, A. J. Am. Chem. Soc. 1995,
117, 5401.
15. Experimental procedure for the conversion of 9 to 15: to
50 mg (0.10 mmol) carboxylic acid 9 in 5 mL dichloromethane
under nitrogen was added 0.12 mL (1 mM in dichloro-
methane) of DAST. After 10 min, 0.15 mL (1 mM in di-
chloromethane) of 3, 4-dichlorobenzylamine was added. After
an additional 10 min, the reaction was filtered through a pre-
conditioned SAX cartridge followed by filtration through a
preconditioned SCX cartridge. Concentration provided 36 mg
(55%) of analytically pure ester 14. 1H NMR (300 MHz;
CDCl3) d 7.40–7.30 (m, 5H), 7.18–6.91 (m, 6H), 6.31 (s, 1H),
4.52–4.38 (m, 5H), 3.62 (s, 3H), 2.33–2.19 (m, 1H), 2.09–1.95
(m, 1H), 1.32 (s, 9H), 1.20–1.08 (m, 4H), 0.79 (app t, 6.9 Hz,
3H). To 12.5 mg (0.019 mmol) ester 14 in 0.5 mL methanol
was added 57 mL (0.057 mmol) 1 N NaOH. After 24 h the
reaction mixture was acidified with 1 N HCl, extracted with
Et2O, washed with brine and dried over MgSO4 to provide
In conclusion, the imidazolinone analogues described in
this communication are the first reported stereo-
chemically discrete MurB inhibitors possessing anti-
bacterial activity, and as such, represent a promising
chemotype in the search for novel antibacterial agents.
References and Notes
1. Thornsberry, C.; Ogilvie, P. T.; Holley, H. P., Jr.; Sahm,
D. F. Antimicrob. Agents Chemother. 1999, 43, 2612.
2. Bugg, T. D.; Walsh, C. T. Nat. Prod. Rep. 1992, 9, 199.
3. (a) Sarver, R. W.; Rogers, J. M.; Epps, D. E. J. Biomol.
Screening 2002, 7, 21. (b) Harris, M. S.; Hergerg, J. T.; Cial-
della, J. I.; Martin, J. P., Jr.; Benson, T. E.; Choi, G. H.;
Baldwin, E. T. Acta Cryst., Section D: Biol. Chryst. 2001, D57,
1032.
4. (a) Miyakawa, T.; Matsuzawa, H.; Matsuhashi, M.;
Sugino, Y. J. Bacteriol. 1972, 112, 950. (b) Rowland, S. L.;
Errington, J.; Wake, R. G. Gene 1995, 164, 113.
5. Benson, T. E.; Filman, D. J.; Walsh, C. T.; Hogle, J. M.
Nat. Struct. Biol. 1995, 2, 644.
1
10mg (82%) of 16. H NMR (300 MHz, CD3OD) d 7.49–7.39
(m, 5H), 7.27–7.23 (m, 1H), 7.12–7.03 (m, 2H), 6.98–6.93 (m,
3H), 6.60 (s, 1H), 4.54 (dd, 4.79 and 10.8 Hz, 1H), 4.43–4.40
(m, 4H), 2.17–2.10 (m, 1H), 2.03–1.99 (m, 1H), 1.34 (s, 9H),
1.20–0.90 (m, 4H), 0.797 (t, 6.9 Hz, 3H).
16. (a) Sylvester, D. R.; Alvarez, E.; Patel, A.; Ratnam, K.;
Kallender, H.; Wallis, N. G. Biochem. J. 2001, 355, 431. (b)
Pucci, M. P.; Discotto, L. F.; Dougherty, T. J. J. Bacteriol.
1992, 174, 1690.