Hydroxylamines as Oxygen Atom Nucleophiles
SCHEME 1
FIGURE 1. Hydroxylamines and oximes as oxygen atom
nucleophiles.
nucleophiles due to their equilibrium acidities being
enhanced by a CdN bond or electron-withdrawing sub-
stituent. In this paper, we describe the in detail study of
hydroxylamines as oxygen nucleophiles in palladium or
iridium-catalyzed allylic substitutions. We also report the
iridium-catalyzed asymmetric reaction.
Hydroxylamine derivatives are the attractive synthetic
reagents for allylic substitution because they have ni-
trogen and oxygen atoms as nucleophiles. However,
allylic substitution using hydroxylamines has been lim-
ited to palladium-catalyzed amination, as a result of the
reaction of an electrophilic π-allyl palladium complex
with the nucleophilic nitrogen atom of hydroxylamines.6
Additionally, procedures for preparing the allylated hy-
droxylamines often require lengthy linear manipulation.7
As shown below, this reaction is extremely facile and give
allylated hydroxylamines in good yield under mild reac-
tion conditions.
TABLE 1. Iridium-Catalyzed Reaction of
Hydroxylamine Derivatives 4A-Ea
product (% yield)b
hydroxyl-
entry reagent solvent amine
time
5
6
1
2
1a
1a
1a
1a
1a
1a
1a
1a
2
MeCN
MeCN
MeCN
MeCN
MeCN
THF
CH2Cl2
toluene
MeCN
MeCN
4A
4B
4C
4D
4E
4D
4D
4D
4D
4D
10 min 5Aa (92)
none
3 h
6 h
5Ba (53)
5Ca (34)
6Ba (37)
6Ca (21)
6Da (98)
3
4
10 min none
5
3 h
no reaction
6
3.5 h
3.5 h
3.5 h
24 h
24 h
none
6Da (92)
6Da (86)
6Da (74)
7
none
none
no reaction
8
9
Results and Discussion
10
3a
6Da (5)
a Reactions were carried out using allylic reagents (1 equiv) and
hydroxylamine derivatives 4A-E (1 equiv) in the presence of
[IrCl(cod)]2 (4 mol %). b Isolated yields.
Allylic Substitution of Hydroxylamines Having
an N-Electron-Withdrawing Substituent. Controlling
the regioselectivities has been of great importance in
allylic substitution of simple acyclic substrates.8 The
iridium-catalyzed regioselective allylic amination giving
the branched products was achieved by Takeuchi’s
group.9 Therefore, the iridium-catalyzed allylic substitu-
tion has been a subject of current interest. The effective
iridium-catalyzed etherification of alcohols with allyl
acetate was also reported by Ishii’s group.10 The highly
regio- and enantioselective allylic substitutions have been
recently disclosed by using an iridium-phosphoramidite
complex.11
As a part of our studies on the iridium-catalyzed
reactions,12 we investigated the iridium-catalyzed allylic
substitution of several hydroxylamines 4A-E (Scheme
1). In the presence of [IrCl(cod)]2 (4 mol %), the reactions
of hydroxylamines 4A-E with allylic carbonate 1a were
run in MeCN at 20 °C (Table 1, entries 1-5). The
N-benzylhydroxylamine 4A worked as a nitrogen nucleo-
phile to give the branched N-allylated product 5Aa in
92% yield without formation of O-allylated product 6Aa
(entry 1). In contrast, both nitrogen and oxygen atoms
on N-Boc-hydroxylamine 4B and N-Cbz-hydroxylamine
4C acted as nucleophiles to give the N-allylated products
5Ba-Ca and O-allylated products 6Ba-Ca (entries 2
(4) Miyabe, H.; Yoshida, K.; Matsumura, A.; Yamauchi, M.; Take-
moto, Y. Synlett 2003, 567.
(5) (a) Miyabe, H.; Matsumura, A.; Yoshida, K.; Yamauchi, M.;
Takemoto, Y. Synlett 2004, 2123. (b) Miyabe, H.; Matsumura, A.;
Moriyama, K.; Takemoto, Y. Org. Lett. 2004, 6, 4631.
(6) (a) Murahashi, S.; Imada, Y.; Taniguchi, Y.; Kodera, Y. Tetra-
hedron Lett. 1988, 29, 2973. (b) Genet, J.-P.; Thorimbert, S.; Touzin,
A.-M. Tetrahedron Lett. 1993, 34, 1159.
(7) (a) Bull, S. D.; Davies, S. G.; Domingez, S. H.; Jones, S.; Price,
A. J.; Sellers, T. G. R.; Smith, A. D. J. Chem. Soc., Perkin Trans. 1
2002, 2141. (b) Ishikawa, T.; Kawakami, M.; Fukui, M.; Yamashita,
A.; Urano, J.; Saito, S. J. Am. Chem. Soc. 2001, 123, 7734.
(8) For some selected examples, see: (a) Hayashi, T.; Kishi, K.;
Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990, 31, 1743. (b) Trost, B.
M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104. (c) Glorius, F.;
Pfaltz, A. Org. Lett. 1999, 1, 141. (d) Bartels, B.; Helmchen, G. Chem.
Commun. 1999, 741. (d) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.;
Dai, L.-X. J. Am. Chem. Soc. 2001, 123, 7471. (e) Trost, B. M.; Dogra,
K. J. Am. Chem. Soc. 2002, 124, 7256. (f) Bartels, B.; G.-Yebra, C.;
Helmchen, G. Eur. J. Org. Chem. 2003, 1097.
(11) For some selected examples, see: (a) Bartels, B.; Helmchen,
G. Chem. Commun. 1999, 741. (b) Fuji, K.; Kinoshita, N.; Tanaka, K.;
Kawabata, T. Chem. Commun. 1999, 2289. (c) Ohmura, T.; Hartwig,
J. F. J. Am. Chem. Soc. 2002, 124, 15164. (d) Lo´pez, F.; Ohmura, T.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 3426. (e) Lipowsky, G.;
Helmchen G. Chem. Commun. 2004, 116. (f) Welter, C.; Koch, O.;
Lipowsky, G.; Helmchen, G. Chem. Commun. 2004, 896. (g) Fisher,
C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004,
126, 1629. (h) Tissot-Croset, K.; Polet, D.; Alexakis, A. Angew. Chem.,
Int. Ed. 2004, 43, 2426. (i) Alexakis, A.; Polet, D. Org. Lett. 2004, 6,
3529. (j) Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794.
(k) Shu, C.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004,
43, 4797.
(9) For some selected examples, see: (a) Kezuka, S.; Kanemoto, K.;
Takeuchi, R. Tetrahedron Lett. 2004, 45, 6403. (b) Takeuchi, R.; Ue,
N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123,
9525. (c) Takeuchi, R.; Ue, N.; Tanabe, K. Angew. Chem., Int. Ed. 2000,
39, 1975. (d) Takeuchi, R.; Shiga, N. Org. Lett. 1999, 1, 265. (e)
Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647. (f)
Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263. For a
review, see: (g) Takeuchi, R. Synlett 2002, 1954.
(12) Our studies on the iridium-catalyzed reaction, see: (a) Kanaya-
ma, T.; Yoshida, K.; Miyabe, H.; Takemoto, Y. Angew. Chem., Int. Ed.
2003, 42, 2054. (b) Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi,
Y.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197. (c) Miyabe, H.; Yoshida,
K.; Kobayashi, Y.; Matsumura, A.; Takemoto, Y. Synlett 2003, 1031.
(10) For some selected examples, see: (a) Nakagawa, H.; Hiraba-
yashi, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 3474. (b)
Okimoto, Y.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124, 1590.
J. Org. Chem, Vol. 70, No. 6, 2005 2149