Journal of the American Chemical Society
COMMUNICATION
side reactions (solvent deprotonation and cleavage) occur.23 For
these reasons, structurally characterized heavier alkali organo-
metallics are still a rarity.24 Sufficient description of the bonding
situation in these complexes in terms of traditional coordination
chemistry is challenging due to the number of multi-hapto
interactions.25 Large (soft) metal ions interact with large anions
with at least partially delocalized charge, leading to powerful
nucleophiles.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental and calculation
b
details; crystallographic data in CIF format for 1. This material is
Figure 3. Alignment of calculated geometry (dark gray) and the X-ray
structure-based molecular presentation (light gray).
’ AUTHOR INFORMATION
Corresponding Author
Table 1. Calculated, Multicenter-Corrected Atomic Charges
and Two-Center Shared Electron Numbers (σ) for Selected
Atoms of 1 at RIMP2/def2-TZVPP Level of Theory
’ ACKNOWLEDGMENT
We thank the Deutsche Forschungsgemeinschaft (DFG,
Bonn/Germany) for generous financial support of this research
initiative. We also acknowledge the financial support of the
Fonds der Chemischen Industrie (VCI/FCI). S.K. and R.K. are
very grateful to the Stiftung Stipendienfonds im Verband der
Chemischen Industrie for a Ph.D. grant.
atom
charge
σ
atom
charge
σ
C1
C2
C3
C4
C5
ꢀ0.2356
0.0492
0.0576
0.0958
0.2082
0.0551
0.1212
C6
C8
C9
ꢀ0.0263
ꢀ0.1924
ꢀ0.0121
0.0955
0.0348
ꢀ
ꢀ0.2289
ꢀ0.0152
ꢀ0.2686
Rb
0.7646
ꢀ
’ REFERENCES
(1) Holy, N. L. Chem. Rev. 1974, 74, 243–277.
(2) Wooster, C. B.; Godfrey, K. L. J. Am. Chem. Soc. 1937,
59, 596–597.
(3) (a) Birch, A. J. J. Chem Soc. 1944, 430–436. (b) Birch, A. J.
J. Chem. Soc. 1945, 809–813. (c) Birch, A. J. J. Chem. Soc. 1946, 593–597.
(4) Sustmann, R.; Schmidt, H. Chem. Ber. 1979, 112, 1440–1447.
(5) (a) Yasuda, H.; Yamauchi, M.; Ohnuma, Y.; Nakamura, A. Bull.
Chem. Soc. Jpn. 1981, 54, 1481–1491. (b) Pratt, L. M.; Streitwieser, A.
J. Org. Chem. 2000, 65, 290–294. (c) Melero, C.; Herrera, R. P.; Guijarro,
A.; Yus, M. Chem. Eur. J. 2007, 13, 10096–10107. (d) Cerpa, E.; Tenorio,
F. J.; Contreras, M.; Villanueva, M.; Beltrꢀan, H. I.; Heine, T.; Donald,
K. J.; Merino, G. Organometallics 2008, 27, 827–833.
(6) Harvey, R. G.; Lindow, D. F.; Rabideau, P. W. J. Am. Chem. Soc.
1972, 94, 5412–5420.
(7) Bock, H.; Havlas, Z.; Gharagozloo-Hubmann, K.; Holl, S.;
Sievert, M. Angew. Chem. 2003, 115, 4521–4525; Angew. Chem. Int.
Ed. 2003, 42, 4385–4389.
(8) L€uhder, K. Z. Chem. 1969, 9, 459–460.
(9) Krieck, S.; G€orls, H.; Westerhausen, M. Organometallics 2010,
29, 6790–6800.
(10) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.
Advanced Inorganic Chemistry; John Wiley & Sons: New York, 1999.
(11) (a) Reiser, O.; K€onig, B.; Meerholz, K.; Heinze, J.; Wellauer, T.;
Gerson, F.; Frim, R.; Rabinovitz, M.; de Meijere, A. J. Am. Chem. Soc.
1993, 115, 3511–3518. (b) Meerholz, K.; Heinze, J. Electrochim. Acta
1996, 41, 1839–1854.
(12) Huber, W.;May, A.; M€ullen, K. Chem. Ber. 1981, 114, 1318–1336.
(13) Maercker, A. Angew. Chem. 1987, 99, 1002–1019; Angew. Chem.
Int. Ed. 1987, 26, 972–989.
(14) (a) Krieck, S.; G€orls, H.; Yu, L.; Reiher, M.; Westerhausen, M.
J. Am. Chem. Soc. 2010, 132, 12492–12501. (b) Krieck, S.; G€orls, H.;
Westerhausen, M. J. Organomet. Chem. 2009, 694, 2204–2209. (c) Langer,
J.; Krieck, S.; Fischer, R.; G€orls, H.; Walther, D.; Westerhausen, M.
Organometallics 2009, 28, 5814–5820. (d) Kennedy, A. R.; Klett, J.;
charge distribution given in Table 1, the negative charge is mainly
localized at the carbon atoms C1, C3, and C5 of the central ring,
indicating the presence of a conjugated pentadienide moiety.
Interestingly, the elongation of the C4ꢀC5 bond is attended by a
pronounced negative charge at C5. The stronger bonding of Rb1
to C3 and C5 in comparison to the other carbon atoms of the
center ring is also reflected in the high value for the shared-
electron numbers, which can represent the bond strength of a
covalent bond in a comparative way.19,20 Otherwise, theoretical
studies of acyclic pentadienyl rubidium complexes21 and allyl
rubidium complexes22 (pentadienyl systems can be regarded as
vinylogous allyl compounds) predict bonding situations similar
to that found in 1.
The Birch-type reduction of 1,2-diphenylbenzene with rubi-
dium in THF allows the isolation of 1,2-diphenylcyclohexadienyl
rubidium (1). This complex represents a very rare example of a
main-group metal pentadienide complex. THF molecules are
able to selectively protonate the 1,2-diphenylbenzene dianion,
but the monoanion of 1 is stable in THF solutions. In this
reduction process, THF is consumed as a stoichiometric com-
ponent. In addition, 1,2-diphenylbenzene reacts much faster than
toluene under these reaction conditions at ꢀ40 ꢀC. In contrast to
rather hard ethers and amines, the soft rubidium cation prefers a
coordination environment with soft side-on-bound arene li-
gands. Protolysis of 1 yields a mixture of 2,3-diphenyl-1,
4-cyclohexadiene (2) and 2,3-diphenyl-1,5-cyclohexadiene (3).
Heavier alkali organometallics are exceedingly sensitive to-
ward moisture and air and often pyrophoric, and they show
thermal decomposition at ambient temperatures. Due to the
highly polarized metalꢀcarbon interactions, such compounds
are sparingly soluble in hydrocarbons, whereas in polar media
6962
dx.doi.org/10.1021/ja2018527 |J. Am. Chem. Soc. 2011, 133, 6960–6963