Journal of the American Chemical Society
Communication
(10) Yao, C.; Liu, N.; Long, S.; Wu, C.; Cui, D. Polym. Chem. 2016, 7,
1264.
(11) Liu, D.; Yao, C.; Wang, R.; Wang, M.; Wang, Z.; Wu, C.; Lin, F.;
Li, S.; Wan, X.; Cui, D. Angew. Chem., Int. Ed. 2015, 54, 5205.
(12) Liu, D.; Wang, M.; Wang, Z.; Wu, C.; Pan, Y.; Cui, D. Angew.
Chem., Int. Ed. 2017, 56, 2714.
worthwhile issues of interest, the presence and operation of a κ-
X assisted, enhanced incorporation is clearly evident.
In conclusion, we have observed severe effects of different
functional groups and linker lengths on polymerization rate
constants and monomer reactivity ratios in copolymerizations
of BD and polar functionalized dienes catalyzed by Ni-1.
Although certain linker lengths lead to an unprecedented
preference for the incorporation of the polar functionalized
diene, all obtained copolymers are stereoregular (cf. SI).
Depending on the linker length, the strong enhancement of
incorporation is accompanied by a severe or moderate decrease
of the polymerization rate vs BD homopolymerization. For
other “nonmatched” linker lengths, the incorporation of the
comonomer is only slightly favored while at the same time
polymerization rates are only moderately influenced. The
correct choice of a suitable linker length thus enables a facile
copolymerization of dienes functionalized with difficult polar
moieties including PhS- or even PhNH- groups. We suggest
that this remarkable behavior results from a κ-X assisted
precoordination of the functional group to the metal center
based on kinetic NMR experiments with various comonomers
and model compounds.
(13) Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma,
K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
(14) Guironnet, D.; Caporaso, L.; Neuwald, B.; Gottker-Schnetmann,
̈
I.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2010, 132, 4418.
(15) Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.;
Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16030.
(16) Friedberger, T.; Wucher, P.; Mecking, S. J. Am. Chem. Soc. 2012,
134, 1010.
(17) Schuster, N.; Runzi, T.; Mecking, S. Macromolecules 2016, 49,
̈
1172.
(18) O’Connor, A. R.; Urbin, S. A.; Moorhouse, R. A.; White, P. S.;
Brookhart, M. Organometallics 2009, 28, 2372.
(19) O’Connor, A. R.; White, P. S.; Brookhart, M. J. Am. Chem. Soc.
2007, 129, 4142.
(20) The virtually complete comonomer consumption was
1
determined by the absence of olefinic comonomer signals in the H
NMR spectra.
(21) Please note that this corresponds at the same time to a gradual
transition from a copolymerization of BD and PhS-3-BD to a mere
homopolymerization of BD, thus rationalizing the description of this
behavior by determination of two different rate constants for the two
distinct (co)polymerization regimes.
(22) Note that in these experiments the initial ratio of
BD:comonomer is ca. 5:1 and the BD:comonomer ratio increases
significantly during the polymerization. That is, the incorporation of
comonomer is still favored as also reflected by kCoMo/kBD = rCoMo > 1
for all comonomers described in this example.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Kinetic plots, synthetic procedures, and selected NMR
(23) Note for these copolymerizations that the polymerization
behavior deviates in some cases significantly from first-order behavior
for so far unknown reasons.
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
■
(24) Note that in detail, the 1-olefin function will coordinate stronger
than a trisubstituted olefinic moiety of the polymer backbone. Also,
these model compounds rather resemble the coordination behavior of
an arbitrary, incorporated comonomer unit in the polymer backbone
than an ultimately incorporated comonomer unit as they can not
simulate a possible involved metal-comonomer bond. Notwithstand-
ing, the essential feature of a potential bidentate κ-S, η2-olefin
coordination is reflected.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Karen Burke, Maggie Vielhaber, and Stephan
Rodewald for fruitful discussions. Financial support by The
Goodyear Tire & Rubber Company is gratefully acknowledged.
REFERENCES
■
(1) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267.
(2) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am.
Chem. Soc. 1998, 120, 888.
(3) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.
Chem. Commun. 2002, 744.
(4) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215.
(5) Chen, E. Y. X. Chem. Rev. 2009, 109, 5157.
(6) Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.;
Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N.
M.; Nozaki, K. Acc. Chem. Res. 2013, 46, 1438.
(7) Radlauer, M. R.; Day, M. W.; Agapie, T. J. Am. Chem. Soc. 2012,
134, 1478.
(8) Ota, Y.; Ito, S.; Kobayashi, M.; Kitade, S.; Sakata, K.; Tayano, T.;
Nozaki, K. Angew. Chem., Int. Ed. 2016, 55, 7505.
(9) Leicht, H.; Gottker-Schnetmann, I.; Mecking, S. ACS Macro Lett.
̈
2016, 5, 777.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX