36
A. Tyagi et al. / Chemical Physics 369 (2010) 27–36
[2] W. Friedrich, Vitamins, Walter de Gruyter, Berlin, 1988. p. 445.
Under anaerobe conditions the initial quantum yield of photo-
[3] S. Otani, in: T.P. Singer (Ed.), Flavins and Flavoproteins, Elsevier, Amsterdam,
1976, p. 323.
[4] S. Kasai, S. Yamanaka, H.-C. Wang, K. Matsui, J. Nutr. Sci. Vitaminol. 25 (1979)
289.
degradation, /D,0, increased likely because of longer triplet-state
lifetime (longer 3RoFꢅ lifetime enables longer catalytic buffer inter-
action time for degradation). Also the maximum quantum yield of
8-MNH-RF sensitized photo-degradation of RoF, /D,max, increased
since the triplet-state lifetimes of 8-MNH-RF and RoF increased
[5] T. Mathes, C. Vogl, J. Stolz, P. Hegemann, J. Mol. Biol. 385 (2009) 1511.
[6] S. Otani, S. Kasai, K. Matsui, Methods Enzymol. 66 (1980) 235.
[7] K. Yorita, H. Misaki, B.A. Palfey, V. Massey, PNAS 97 (2000) 2480.
[8] R. Flores, A. Dederichs, E. Cerdá-Olmedo, R. Hertel, Plant Biol. 1 (1999) 645.
[9] P. Zirak, A. Penzkofer, T. Mathes, P. Hegemann, J. Photochem. Photobiol. B 97
(2009) 61.
(longer
time
for
collision
excitation
transfer
from
38-MNH-RFꢅ to 1RoF, and longer lifetime of formed 3RoFꢅ). The
photo-degradation sensitizing enhancement under anaerobe con-
ditions excludes the involvement of singlet excited molecular oxy-
gen in the photo-degradation, since 1O2 may be only formed by
excited-state triplet flavin – ground-state triplet oxygen annihila-
[10] M.K. Otto, M. Jayaram, R.M. Hamilton, M. Delbrück, PNAS 78 (1981) 266.
[11] S. Kasai, R. Miura, K. Matsui, Bull. Chem. Soc. Jpn. 48 (1975) 2877.
[12] K. Shiga, K. Horuke, Y. Nishina, S. Otani, H. Watari, T. Yamano, Biochemistry 85
(1979) 931.
[13] V.M. Berezovskii, A.I. Stepanov, N.A. Polyakova, L.S. Tul’chinskaya, A.Ya.
Kukanova, Bioorg. Chem. 3 (1977) 393.
[14] S. Shinkai, K. Kameoka, N. Honda, K. Ueda, O. Manabe, J. Lindsey, Bioorg. Chem.
14 (1986) 119.
[15] K. Matsui, N. Juri, Y. Kubo, S. Kasai, J. Biochem. 86 (1979) 167.
[16] P. Zirak, A. Penzkofer, T. Mathes, P. Hegemann, Chem. Phys. 358 (2009) 111.
[17] P.-S. Song, E.B. Walker, R.D. Vierstra, K.L. Poff, Photochem. Photobiol. 32 (1980)
393.
ꢅ
ꢅ
tion according to 3flavin þ O2 ! flavin þ O2 under aerobe con-
ditions [38,39]. In the case of singlet oxygen involvement, the
opposite behaviour should have been observed (i.e. higher photo-
degradation under aerobe conditions should have occurred).
3
1
1
5. Conclusions
[18] B.J. Fritz, S. Kasai, K. Matsui, Photochem. Photobiol. 45 (1987) 113.
[19] B. Holmström, Arkiv. Kemi. 22 (1964) 281.
[20] M. Schuman Jorns, G. Schöllnhammer, P. Hemmerich, Eur. J. Biochem. 57
(1975) 35.
Roseoflavin in aqueous solution was found to have very low
fluorescence quantum yield and sub-picoseond fluorescence life-
time at room-temperature due to photo-induced intra-molecular
charge-transfer [9,16].
[21] I. Ahmad, Q. Fasihullah, F.H.M. Vaid, J. Photochem. Photobiol. B 75 (2004) 13.
[22] I. Ahmad, Q. Fasihullah, F.H.M. Vaid, J. Photochem. Photobiol. B 78 (2005) 229.
[23] W. Scheidler, A. Penzkofer, Opt. Commun. 80 (1990) 127.
[24] K. Matsui, S. Kasai, in: T.P. Singer (Ed.), Flavins and Flavoproteins, Elsevier,
Amsterdam, 1976, p. 328.
[25] P. Drössler, W. Holzer, A. Penzkofer, P. Hegemann, Chem. Phys. 282 (2002) 429.
[26] S.J. Strickler, R.A. Berg, J. Chem. Phys. 37 (1962) 814.
[27] J.B. Birks, D.J. Dyson, Proc. Roy. Soc. Lond. Ser. A 275 (1963) 135.
[28] A.V. Deshpande, A. Beidoun, A. Penzkofer, G. Wagenblast, Chem. Phys. 142
(1990) 123.
The photo-stability of roseoflavin was studied in un-buffered
Millipore water, in pH 8 and pH 10 phosphate buffer, and in pH
8 Tris–HCl buffer. The highest photo-stability was observed for
Millipore water and the lowest photo-stability was found in phos-
phate buffer. The photo-degradation of roseoflavin is thought to
occur dominantly in the triplet state. The primary photoproduct
of roseoflavin photo-degradation, 8-methylamino-riboflavin,
exhibits reasonably high fluorescence quantum yield and fluores-
cence lifetime. It strongly enhances the degradation of roseoflavin
by photo-induced excitation transfer (Dexter-type and combined
HOMO and LUMO electron transfer) from triplet 8-methylamino-
riboflavin to singlet ground-state roseoflavin with subsequent deg-
radation of the formed triplet roseoflavin.
[29] S.I. Vavilov, Z. Phys. 42 (1927) 311.
[30] G.N. Lewis, M. Kasha, J. Am. Chem. Soc. 66 (1944) 2100.
[31] N.J. Chacon, J. McLearie, R.S. Sinclair, Photochem. Photobiol. 47 (1988) 647.
[32] A. Losi, E. Polverini, B. Quest, W. Gärtner, Biophys. J. 82 (2002) 2627.
[33] S.D.M. Islam, A. Penzkofer, P. Hegemann, Chem. Phys. 291 (2003) 97.
[34] B.J. Fritz, K. Matsui, S. Kasai, A. Yoshimura, Photochem. Photobiol. 45 (1987)
539.
[35] W.L. Cairns, D.E. Metzler, J. Am. Chem. Soc. 93 (1971) 2772.
[36] F. Müller, S. Ghisla, A. Bacher, in: O. Isler, G. Brubacher, S. Ghisla, K. Kräutler
(Eds.), Vitamine II, Thieme Verlag, Stuttgart, 1988, p. 50.
[37] A. Tyagi, P. Zirak, A. Penzkofer, T. Mathes, P. Hegemann, M. Mack, S. Ghisla,
Chem. Phys. 364 (2009) 19.
Acknowledgements
[38] B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley–VCH,
Weinheim, 2002.
[39] N.J. Turro, V. Ramamurthy, J.C. Scaiano, Principles of Molecular
Photochemistry: An Introduction, University Science Books, Sausalito, CA,
2009.
[40] D.L. Dexter, J. Chem. Phys. 21 (1953) 836.
[41] S. Speiser, Chem. Rev. 96 (1996) 1953.
The work was supported by the Deutsche Forschungsgemeins-
chaft (DFG): GK640 (A.P.), FOR526 (A.P., P.H.), SFB 498 (P.H.) and
the Cluster of Excellence ‘‘Unifying Concepts in Catalysis” (P.H.).
A.P. is grateful to Profs. F.J. Gießibl and J. Repp for their kind
hospitality.
[42] J. Shirdel, A. Penzkofer, R. Procházka, Z. Shen, J. Daub, Chem. Phys. 336 (2007)
1.
[43] P. Atkins, J. de Paula, Atkin’s Physical Chemistry, eighth ed., Oxford University
Press, Oxford, 2006.
References
[1] K. Matsui, S. Kasai, in: F. Müller (Ed.), Chemistry and Biochemistry of
Flavoenzymes, vol. 1, CRC Press, Boca Raton, FL, 1991, p. 105.