Sc Ion-Promoted Hydride Transfer of NADH Analogue
A R T I C L E S
Scheme 1
The effects of the metal ion on the mechanistic borderline in
the hydride-transfer reactions of NADH and analogues have
particularly attracted interest because of the essential role of
metal ions in the redox reactions of nicotinamide coenzymes
in the native enzymatic system.3-5,25-31 Metal ions (Mn+) acting
as a Lewis acid are known to promote hydride-transfer reactions
of NADH analogues25-31 as well as electron transfer from
electron donors (D) to electron acceptors, such as p-benzo-
quinones (Q), which have been commonly used in the hydride-
transfer and electron-transfer reactions of NADH analogues,
where Mn+ bind to the product radical anion.32-41 Semiquinone
radical anions (Q•-) derived from p-benzoquinones form not
only simple 1:1 complexes (Q•--Mn+) with Mn+ but also more
intricate complexes with Mn+, i.e., 1:2 complexes [Q•--(Mn+)2]
as shown in Scheme 2a.29,32 In such a case, the rate constants
of Mn+-promoted electron-transfer reactions increase with
increasing Mn+ concentration ([Mn+]), exhibiting a second-order
dependence on [Mn+] at high concentrations due to formation
of the 1:2 complexes [Q•--(Mn+)2] (Scheme 2a).29,32 Virtually
the same second-order dependence is observed in Mn+-promoted
hydride-transfer reactions of NADH analogues, such as 1-ben-
zyl-1,4-dihydronicotinamide (BNAH), when the hydride-transfer
reactions proceed via an electron-transfer pathway, which is
promoted by the formation of 1:2 complexes [Q•--(Mn+)2]
(Scheme 2b).29,32 In contrast to the case of an electron-transfer
pathway, a one-step hydride-transfer pathway is not promoted
by Mn+, because Mn+ has generally no interaction with Q.29,32
If a hydride acceptor (A) has a metal ion-binding site, the
complex formation of A with Mn+ (A-Mn+), which results in
enhancement of both electrophilicity and electron-acceptor
ability of A, would provide a delicate balance between the two
reaction pathways.42 However, the mechanistic borderline
between the two reaction pathways in Mn+-promoted hydride-
transfer reactions of NADH analogues has yet to be clarified,
despite the important role of NADH in biological redox systems.
(21) Fukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem. Soc.
2000, 122, 4286.
(22) (a) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Perkin Trans.
2 1989, 1037. (b) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. J. Am. Chem.
Soc. 1989, 111, 1497. (c) Fukuzumi, S.; Kitano, T.; Ishikawa, M. J. Am.
Chem. Soc. 1990, 112, 5631.
(23) (a) Carlson, B. W.; Miller, L. L. J. Am. Chem. Soc. 1985, 107, 479. (b)
Miller, L. L.; Valentine, J. R. J. Am. Chem. Soc. 1988, 110, 3982. (c) Colter,
A. K.; Plank, P.; Bergsma, J. P.; Lahti, R.; Quesnel, A. A.; Parsons, A. G.
Can. J. Chem. 1984, 62, 1780.
(24) (a) Coleman, C. A.; Rose, J. G.; Murray, C. J. J. Am. Chem. Soc. 1992,
114, 9755. (b) Murray, C. J.; Webb, T. J. Am. Chem. Soc. 1991, 113, 7426.
(25) (a) Sund, H. Pyridine-Nucleotide Dependent Dehydrogenase; Walter de
Gruyer: West Berlin, 1977. (b) Kellog, R. M. Top. Curr. Chem. 1982,
101, 111. (c) Bunting, J. W. Bioorg. Chem. 1991, 19, 456. (d) He, G.-X.;
Blasko, A.; Bruice, T. C. Bioorg. Chem. 1993, 21, 423. (e) Ohno, A. J.
Phys. Org. Chem. 1995, 8, 567.
(26) (a) Sigman, D. S.; Hajdu, J.; Creighton, D. J. In Bioorganic Chemistry;
van Tamelen, E. E., Ed.; Academic Press: New York, 1978; Vol. IV, p
385. (b) Gase, R. A.; Pandit, U. K. J. Am. Chem. Soc. 1979, 101, 7059.
(27) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc.
1987, 109, 305.
(28) (a) Ishikawa, M.; Fukuzumi, S. J. Chem. Soc., Faraday Trans. 1990, 86,
3531. (b) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J. Chem. Soc., Perkin
Trans. 2 1985, 371.
(29) (a) Fukuzumi, S.; Ohkubo, K.; Okamoto, T. J. Am. Chem. Soc. 2002, 124,
14147. (b) Fukuzumi, S.; Fujii, Y.; Suenobu, T. J. Am. Chem. Soc. 2001,
123, 10191.
(30) Fukuzumi, S.; Yuasa, J.; Suenobu, T. J. Am. Chem. Soc. 2002, 124, 12566.
(31) Reichenbach-Klinke, R.; Kruppa, M.; Ko¨nig, B. J. Am. Chem. Soc. 2002,
124, 12999.
(36) (a) Yuasa, J.; Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125,
12090. (b) Yuasa, J.; Suenobu, T.; Fukuzumi, S. ChemPhysChem 2006, 7,
942.
(37) (a) Itoh, S.; Kawakami, H.; Fukuzumi, S. J. Am. Chem. Soc. 1998, 120,
7271. (b) Itoh, S.; Kawakami, H.; Fukuzumi, S. J. Am. Chem. Soc. 1997,
119, 439. (c) Itoh, S.; Kawakami, H.; Fukuzumi, S. Biochemistry 1998,
37, 6562.
(38) (a) Fukuzumi, S.; Okamoto, T.; Otera, J. J. Am. Chem. Soc. 1994, 116,
5503. (b) Fukuzumi, S.; Okamoto, T. J. Am. Chem. Soc. 1993, 115, 11600.
(39) Okamoto, K.; Imahori, H.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125,
7014.
(32) (a) Fukuzumi, S. Bull. Chem. Soc. Jpn. 1997, 70, 1. (b) Fukuzumi, S. In
Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim,
2001; Vol. 4, pp 3-67. (c) Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79,
177.
(33) Fukuzumi, S.; Yuasa, J.; Satoh, N.; Suenobu, T. J. Am. Chem. Soc. 2004,
126, 7585.
(40) The example of metal ion complexes of o-semiquinone radical anions;
see: (a) Ernst, S.; Ha¨nel, P.; Jordanov, J.; Kaim, W.; Kasack, V.; Roth, E.
J. Am. Chem. Soc. 1989, 111, 1733. (b) Rall, J.; Wanner, M.; Albrecht,
M.; Hornung, F. M.; Kaim, W. Chem.sEur. J. 1999, 5, 2802. (c)
Schwederski, B.; Kasack, V.; Kaim, W.; Roth, E.; Jordanov, J. Angew.
Chem., Int. Ed. Engl. 1990, 29, 78.
(34) (a) Fukuzumi, S.; Itoh, S. In AdVances in Photochemistry; Neckers, D. C.,
Volman, D. H., von Bu¨nau, G., Eds.; Wiley: New York, 1998; Vol. 25,
pp 107-172. (b) Fukuzumi, S. Org. Biomol. Chem. 2003, 1, 609.
(35) Yuasa, J.; Suenobu, T.; Ohkubo, K.; Fukuzumi, S. Chem. Commun. 2003,
1070.
(41) Contact and separated ion pairs of alkali-metal salts of a nitrobenzene radical
anion have been isolated and characterized by X-ray crystallography; see:
(a) Lu¨, J.-M.; Rosokha, S. V.; Lindeman, S. V.; Neretin, I. S.; Kochi, J. K.
J. Am. Chem. Soc. 2005, 127, 1797. (b) Davlieva, M. G.; Lu¨, J.-M.;
Lindeman, S. V.; Kochi, J. K. J. Am. Chem. Soc. 2004, 126, 4557.
9
J. AM. CHEM. SOC. VOL. 128, NO. 46, 2006 14939