Organic Letters
Letter
ORCID
Toward the completion of this study, we synthesized 4-(4-
methoxyphenyl)-4-pentenylthioglycoside (MPTG) 28
(Scheme 4). Using conditions similar to the optimized
Notes
Scheme 4. O-Glycosylation with MPTG Donor 28
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the National Science Foundation (CHE-
1665208) and Louisiana State University (LSU) for generous
support of this research. We thank Ms. Connie David (LSU)
for assistance with high resolution mass spectrometry.
REFERENCES
■
(1) (a) Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R.
D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W.,
Etzler, M. E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring
Harbor: New York, 2009. (b) Bertozzi, C. R.; Kiessling, L. L. Science
2001, 291, 2357. (c) Seeberger, P. H.; Werz, D. B. Nature 2007, 446,
1046. (d) Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem. 2009, 1,
611.
(2) (a) Chokhawala, H. A.; Chen, X. Enzymatic Approaches to O-
Glycoside Introduction: Glycosyltransferases. In Comprehensive
Glycoscience; Kamerling, J. P., Ed.; Elsevier Ltd.: Oxford, 2007; Vol.
1, pp 415−451. (b) Yu, H.; Chen, X. Org. Biomol. Chem. 2016, 14,
2809.
(3) Li, H.; Zhang, H.; Yi, W.; Shao, J.; Wang, P. G. ACS Symp. Ser.
2005, 900, 192.
(4) (a) Knerr, L.; Schmidt, R. R. The Use of O-Glycosyl
Trichloroacetimidates for the Polymer-Supported Synthesis of
Oligosaccharides. In Solid Support Oligosaccharide Synthesis and
Combinatorial Carbohydrate Libraries; Seeberger, P. H., Ed.; John
Wiley & Sons, Inc.: New York, 2001; pp 67−98. (b) Schmidt, R. R.;
Jung, K. H. Trichloroacetimidates. In Carbohydrates in Chemistry and
conditions from Table 1, we demonstrate the high-yielding
synthesis of disaccharides 29 (96%) and 30 (70%). Synthesis
of 29 using MBTG donor 9f under the standard conditions
had proceeded in 46% yield (data not shown) due to
purification issues that also plagued the synthesis of 17
(Entry 6, Scheme 2). In addition, synthesis of 30 using MBTG
9f had afforded a 20% yield of O-glycoside (data not shown)
using the standard conditions. It is encouraging that a product
such as 30 resulting from glycosylation of a very hindered
acceptor can be generated in high yield at 25 °C. Finally, in
support of the protonation/sulfur cyclization/O-glycosylation
hypothesis from Scheme 1, we were able to isolate known
tetrahydrothiophene 815 (Scheme 1) from reactions using
donors 9a and 9d−h (Table 1; Scheme 2) and tetrahydro-
thiophene 31 (Scheme 4) from reactions using donor 28.
In conclusion, we have demonstrated that MBTGs and an
MPTG are stable and effective donors for O-glycosylation that
combine the stability of thioglycosides with convenient
activation at 25 °C using catalytic protic acid. O-Glycosylations
occur with a range of MBTG/MPTG donors and alcohols
under conditions that have low reactivity toward electroneutral
alkenes, a rare occurrence with thioglycosides. Further, we
have demonstrated the potential utility of MBTG donors in
various applications including a latent-active strategy involving
alkene cross metathesis. In addition, we have demonstrated the
orthogonality of MBTGs to TCAIs at −20 °C. Finally, we have
confirmed the utility of an MPTG donor in the high-yielding
synthesis of a hindered 1 → 4 linkage. Further studies
involving MBTGs/MPTGs and related donors are underway.
Biology; Ernst, B., Hart, G. W., Sinay, P., Eds.; Wiley-VCH: Weinheim,
̈
2000; Vol. 1, pp 5−59. (c) Seeberger, P. H. Acc. Chem. Res. 2015, 48,
1450. (d) Yu, B.; Sun, J. Chem. Commun. 2010, 46, 4668.
(e) Wittmann, V. Synthesis of Oligosaccharides on Solid Support
Using Thioglycosides and Pentenyl Glycosides. In Solid Support
Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries;
Seeberger, P. H., Ed.; John Wiley & Sons, Inc.: New York, 2001; pp
́
99−116. (f) Codee, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.;
Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769.
(g) Shiao, T. C.; Roy, R. Top. Curr. Chem. 2010, 301, 69.
(5) (a) Goswami, M.; Ellern, A.; Pohl, N. L. B. Angew. Chem., Int. Ed.
2013, 52, 8441. (b) Kabotso, D. E. K.; Pohl, N. L. B. Org. Lett. 2017,
19, 4516. (c) Adhikari, S.; Baryal, K. N.; Zhu, D.; Li, X.; Zhu, J. ACS
Catal. 2013, 3, 57. (d) Wever, W. J.; Cinelli, M. A.; Bowers, A. A. Org.
Lett. 2013, 15, 30. (e) Chu, A.-H. A.; Minciunescu, A.; Bennett, C. S.
Org. Lett. 2015, 17, 6262. (f) Chu, A.-H. A.; Minciunescu, A.;
Montanari, V.; Kumar, K.; Bennett, C. S. Org. Lett. 2014, 16, 1780.
(6) Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.;
Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016,
55, 6515.
(7) (a) Fraser-Reid, B.; Anilkumar, G.; Gilbert, M. R.; Joshi, S.;
Kraehmer, R. Glycosylation Methods: Use of n-Pentenyl Glycosides.
In Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G. W.,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Sinay, P., Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp 135−154.
̈
(b) Fraser-Reid, B.; Merritt, J. R.; Handlon, A. L.; Andrews, C. W.
Pure Appl. Chem. 1993, 65, 779. (c) Mootoo, D. R.; Date, V.; Fraser-
Reid, B. J. Am. Chem. Soc. 1988, 110, 2662. (d) Mootoo, D. R.;
Konradsson, P.; Udodong, U.; Fraser-Reid, B. J. Am. Chem. Soc. 1988,
110, 5583.
1
Experimental procedures, characterization data, H and
(8) (a) Nokami, T. Trends Glycosci. Glycotechnol. 2012, 24, 203.
(b) Singh, G. P.; Watson, A. J. A.; Fairbanks, A. J. Org. Lett. 2015, 17,
4376. (c) Park, J.; Kawatkar, S.; Kim, J.-H.; Boons, G.-J. Org. Lett.
2007, 9, 1959. (d) Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-J. J. Am.
Chem. Soc. 2005, 127, 12090.
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX