3918
A. Armstrong et al. / Tetrahedron Letters 44 (2003) 3915–3918
767; Sulikowski, G. A.; Agnelli, F.; Spencer, P.; Koomen,
have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication number
CCDC 204443. Copies of the data can be obtained, free
of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK (Fax: +44(0)-1223-336033 or
e-mail: deposit@ccdc.cam.ac.uk).
J. M.; Russell, D. H. Org. Lett. 2002, 4, 1447–1450;
Sulikowski, G. A.; Liu, W. D.; Agnelli, F.; Corbett, R.
M.; Luo, Z.; Hershberger, S. J. Org. Lett. 2002, 4,
1451–1454.
5. (a) Armstrong, A.; Critchley, T. J.; Gourdel-Martin, M.-
E.; Kelsey, R. D.; Mortlock, A. A. J. Chem. Soc., Perkin
Trans. 1 2002, 1344–1350; (b) Armstrong, A.; Critchley,
T. J.; Mortlock, A. A. Synlett 1998, 552–553; (c) Arm-
strong, A.; Critchley, T. J.; Gourdel-Martin, M.-E.;
Kelsey, R. D.; Mortlock, A. A. Tetrahedron Lett. 2002,
43, 6027–6030.
6. Of the scattered examples in the literature, most employ
a-methacrylate-derived dienophiles. Boeckman has
reported asymmetric Diels–Alder reactions of methacryl-
ate dienophiles bearing a camphor-derived lactam, but
low selectivities were obtained with simple 2-silyloxy-1,3-
dienes. See: Boeckman, R. K., Jr.; Laci, M.; Johnson, A.
T. Tetrahedron: Asymmetry 2001, 12, 205–217; Boeck-
man, R. K., Jr.; Liu, Y. J. Org. Chem. 1996, 61, 7984–
7985; Boeckman, R. K., Jr.; Nelson, S. G.; Gaul, M. D.
J. Am. Chem. Soc. 1992, 114, 2258–2260. For reaction of
a sultam-bearing a-methacrylate dienophile with a 2-silyl-
oxy-1,3-diene, see: Oppolzer, W.; Seletsky, B. M.; Bernar-
dinelli, G. Tetrahedron Lett. 1994, 35, 3509–3512. For
dimethyl fumarate with 2-trimethylsilyloxy-1,3-butadiene,
see: Furata, K.; Iwanga, K.; Yamamoto, H. Tetrahedron
Lett. 1986, 27, 4507–4510.
7. An alternative approach, which we have not explored,
would employ Rawal’s chiral 1-amino-3-silyloxy-1,3-
dienes. To the best of our knowledge, however, these
have not been used with b-alkyl-substituted acrylates.
See: (a) Janey, J. M.; Iwama, T.; Kozmin, S. A.; Rawal,
V. H. J. Org. Chem. 2000, 65, 9059–9068; (b) Kozmin, S.
A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562–
9573.
8. For an alternative approach to chiral 4,5-disubstituted
cyclohex-2-enones, see: Quattropani, A.; Anderson, G.;
Bernardinelli, G.; Kundig, E. P. J. Am. Chem. Soc. 1997,
119, 4773–4774.
12. Pindur, U.; Lutz, G.; Fischer, G.; Schollmeyer, G.;
Massa, W.; Schroder, L. Tetrahedron 1993, 49, 2863–
2872.
13. Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem.
Soc. 1988, 110, 1238–1256.
14. The stereochemical outcome of this reaction was assigned
based on the Evans chelation model for Diels–Alder
reactions of this type of dienophile with simple dienes
(Ref. 13). This was confirmed by correlation of sign of
optical rotation to compounds obtained by manipulation
of 11b. Details will be reported in a full account of this
work. The crystal structure of the Diels–Alder adduct
between 10a and 2-methoxy-1,3-butadiene has been
reported previously, without details of the conditions
used for the cycloaddition. The stereochemistry of this
compound is consistent with that in Scheme 3. See:
Marsh, R. E.; Schaefer, W. P.; Kukkola, P. J.; Myers, A.
G. Acta Crystallogr. 1992, C48, 1622–1644.
15. (a) Kahn, F. A.; Czerwonka, R.; Reissig, H.-U. Eur. J.
Org. Chem. 2000, 3607–3617; (b) Reissig, H.-U. Top.
Curr. Chem. 1998, 144, 73–135; (c) Kunkel, E.; Reichelt,
I.; Reissig, H.-U. Liebigs Ann. Chem. 1984, 512–530; (d)
Reichelt, I.; Reissig, H.-U. Liebigs Ann. Chem. 1984,
531–551; (e) Reissig, H.-U.; Reichelt, I.; Kunz, T. Org.
Synth. Coll. Vol. 9, 573; (f) Reissig, H.-U.; Zimmer, R.
Chem. Rev. 2003, 103, 1151–1196.
16. Data for 3b: colourless oil; [h]2D1=+69.0 (c 0.58 CHCl3);
wmax 2918, 2856, 1748, 1733, 1677, 1614, 1513, 1456, 1303,
1247, 1097, 1033 cm−1; lH (250 MHz, CDCl3): 7.38–7.25
(5H, m), 7.23 (2H, d, J=8.9 Hz), 6.98 (1H, dd, J=3.2,
0.8 Hz, CHꢀCCO), 6.85 (2H, d, J=8.9 Hz), 4.69 (1H, s,
CH(CO2Et)2), 4.51 (2H, s), 4.39 (2H, s), 4.12–4.25 (4H,
m, OCH2CH3), 3.79 (3H, s, OCH3), 3.66 (1H, dd, J=9.3,
5.0 Hz, CH2OBn), 3.38–3.57 (3H, m, CH2OBn,
CH2OPMB), 2.58–2.71 (2H, m), 2.21–2.38 (2H, m), 1.88
(1H, m, CHCH2OBn), 1.60 (1H, m, CH(CH2)2OPMB),
1.24 (3H, t, J=7.2 Hz, OCH2CH3), 1.22 (3H, t, J=7.2
Hz, OCH2CH3); lC (62.5 MHz, CDCl3): 196.5 (C), 167.9
(C), 167.8 (C), 159.2 (C), 149.7 (C), 138.0 (C), 132.6 (C),
130.3 (C), 129.2 (CH), 128.4 (CH), 127.7 (CH), 127.5
(CH), 113.8 (CH), 73.2 (CH2), 72.7 (CH2), 70.4 (CH2),
67.1 (CH2), 61.7 (CH2), 55.3 (CH3), 50.5 (CH), 42.4
(CH), 41.3 (CH2), 33.2 (CH), 32.9 (CH2), 14.0 (CH3). m/z
9. The dienophiles were prepared by reaction of the appro-
priate aldehyde RCHO with the auxiliary-bearing diethyl
phosphonate. For sultam dienophiles, see: (a) Oppolzer,
W.; Dupuis, D.; Poli, G.; Raynham, T. M.; Bernardinelli,
G. Tetrahedron Lett. 1988, 29, 5885–5888. For oxazolidi-
nones, see: (b) Ishizaki, M.; Hara, Y.; Kojima, S.;
Hoshino, O. Heterocycles 1999, 50, 779–790; (c) Kat-
sumata, A.; Iwaki, T.; Fukumoto, K.; Ihara, M. Hetero-
cycles 1997, 46; 605–616.
10. Vorndam, P. E. J. Org. Chem. 1990, 55, 3693–3695.
11. We thank Dr. A. J. Blake, Dept. of Chemistry, Univer-
sity of Nottingham for this structure determination. Crys-
tallographic data (excluding structure factors) for 11a
(CI): 556 (M+NH4+, 2%), 538 (M+, 2%), 121 (100%).
+
Found: M+NH4
,
556.2912. C31H42NO8 requires:
556.2910.