Communications
displayed new signals assignable to 2a. Alternatively, 2a was cleanly
[14] R. Macías, N. P. Rath, L. Barton, Angew. Chem. 1999, 111, 203;
Angew. Chem. Int. Ed. 1999, 38, 162.
[15] M. Ingleson, N. J. Patmore, G. D. Ruggiero, C. G. Frost, M. F.
Mahon, M. C. Willis, A. S. Weller, Organometallics 2001, 20,
4434.
[16] The stationary point was located at the B3LYP level of theory,
by using density functional theory calculations based on hybrid
functionals. A double z plus polarization valence basis set, 6-
31G(d) was employed for all the atoms except manganese. For
Mn, a basis set with an approximation of effective core
potentials, LANL2DZ was applied. The NBO analysis was
carried out on the resulting structure at the B3LYP level using a
6–311 + G(2d,p) basis set.[20] All calculations were performed
with the Gaussian 98W package of programs.[17]
generated by addition of BH3·PMe3 to a solution of [Mn(CO)4(PMe2-
Ph)(OEt2)]+, which was produced by the reaction of [MnMe(CO)4(P-
Me2Ph)] with [H(OEt2)2](TFPB) in diethyl ether. The PEt3 derivative
2b was prepared by similar methods.
Data for 2a: 1H NMR (500 MHz, [D2]dichloromethane, 238C,
TMS): d = ꢀ4.48 (br, 3H; BH), 1.32 (d, 2J(P,H) = 11.5 Hz, 9H; PMe3),
2
1.98 (d, J(P,H) = 9.0 Hz, 6H; PMe2Ph), 7.57, 7.72 ppm (s, 1H, 2H;
[B{C6H3(CF3)2}4]); 11B NMR (160.4 MHz, [D2]dichloromethane,
238C, BF3·OEt2): d = ꢀ40.4 (dq, 1J(B,H) = 81 Hz, 1J(B,P) = 70 Hz;
BH2·PMe3), ꢀ6.7 ppm (s; TFPB); 31P NMR (202.4 MHz,
[D2]dichloromethane, 238C, 85% H3PO4): d = ꢀ4.0 (br; PMe3),
15.0 ppm (br; PMe2Ph); MS (FAB, sulfolane): m/z (%): 367 (10)
[M+ꢀCO], 193 (100) [Mn(PMe2Ph)+], 139 (43) [PHMe2Ph+].
Data for 2b: 1H NMR (500 MHz, [D2]dichloromethane, 238C,
TMS): d = ꢀ4.43 (br, 3H; BH), 1.10–1.22 (m, 9H; P(CH2CH3)3), 1.35
(d, 2J(P,H) = 11.5 Hz, 9H; PMe3), 1.72–1.80 (m, 6H; P(CH2CH3)3),
7.57, 7.72 ppm (s, 1H, 2H; [B{C6H3(CF3)2}4]); 11B NMR (160.4 MHz,
[D2]dichloromethane, 238C, BF3·OEt2): d = ꢀ40.3 (br), ꢀ6.7 ppm (s;
TFPB); 31P NMR (202.4 MHz, [D2]dichloromethane, 238C, 85%
H3PO4): d = ꢀ5.3 (br; PMe3), 48.7 ppm (br; PEt3); MS (FAB,
sulfolane): m/z (%): 173 (100) [Mn(PEt3)+], 120 (28) [PHEt3+].
[17] Gaussian98 (RevisionA.11), M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S.
Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B.
Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J.
V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W.
Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh, PA, 2001.
Received: August 19, 2002
Revised: December 3, 2002 [Z19992]
Keywords: boranes · boron · coordination modes · manganese ·
.
protonation
[18] Several boryl cations with the formula [BX2·L]+ (L = neutral
Lewis base) have been reported: P. Kꢀlle, H. Nꢀth, Chem. Rev.
1985, 85, 399.
[19] a) J. Huhmann-Vincent, B. L. Scott, G. J. Kubas, Inorg. Chim.
Acta 1999, 294, 240; b) J. Huhmann-Vincent, B. L. Scott, G. J.
Kubas, J. Am. Chem. Soc. 1998, 120, 6808; c) X. Fang, J.
Huhmann-Vincent, B. L. Scott, G. J. Kubas, J. Organomet.
Chem. 2000, 609, 95; d) J. Huhmann-Vincent, B. L. Scott, G. J.
Kubas, Inorg. Chem. 1999, 38, 115; e) X. Fang, B. L. Scott, K. D.
John, G. J. Kubas, Organometallics 2000, 19, 4141.
[1] R. H. Crabtree, Acc. Chem. Res. 1990, 23, 95.
[2] R. H. Morris, P. G. Jessop, Coord. Chem. Rev. 1992, 121, 155.
[3] D. M. Heinkey, W. J. Oldham, Jr., Chem. Rev. 1993, 93, 913.
[4] R. H. Crabtree, Angew. Chem. 1993, 105, 823; Angew. Chem. Int.
Ed. Engl. 1993, 32, 789.
[5] G. J. Kubas, Metal Dihydrogen and s-Bond Complexes, Kluwer
Academic/Plenum Publishers, New York, 2001.
[20] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold,
NBO version 3.1.
[6] a) Protonation of a silyl complex [CpRu(PMe3)2SiCl3]: F. R.
Lemke, J. Am. Chem. Soc. 1994, 116, 11183; S. T. N. Freeman,
F. R. Lemke, L. Brammer, Organometallics 2002, 21, 2030;
b) protonation of [CpFe(CO)(PEt3)SiEt3]: E. Scharrer, S. Chang,
M. Brookhart, Organometallics 1995, 14, 5686.
[7] Y. Kawano, T. Yasue, M. Shimoi, J. Am. Chem. Soc. 1999, 121,
11744.
[8] T. Yasue, Y. Kawano, M. Shimoi, Chem. Lett. 2000, 58.
[9] M. Shimoi, S. Nagai, M. Ichikawa, Y. Kawano, K. Katoh, M.
Uruichi, H. Ogino, J. Am. Chem. Soc. 1999, 121, 11704.
[10] T. Kakizawa, Y. Kawano, M. Shimoi, Organometallics 2001, 20,
3211.
ꢀ
[11] Crystal data for 1a: pale yellow crystals, triclinic, space group P1
(no. 2); T= 150 K; a = 10.5746(8), b = 10.6779(9), c =
9.0029(7) ; a = 109.026(2), b = 96.043(3), g = 88.092(2)8; V=
955.69(13) 3; Z = 2, R = 0.024, wR2 = 0.060 for 4070 reflections
with j Fo j > 3s(Fo), 296parameters, GoF = 1.110. The boron-
attached hydrogen atoms were found by the difference Fourier
syntheses and their positions were refined. CCDC-190001
contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[12] K. M. Waltz, H. He, C. N. Muhoro, J. F. Hartwig, J. Am. Chem.
Soc. 1995, 117, 11357.
[13] M. Brookhart, B. Grant, A. F. Vople, Jr., Organometallics 1992,
11, 3920.
1730
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 1727 – 1730